论文标题

重新思考深度可分离的卷积:内核内相关性如何改善Mobilenets

Rethinking Depthwise Separable Convolutions: How Intra-Kernel Correlations Lead to Improved MobileNets

论文作者

Haase, Daniel, Amthor, Manuel

论文摘要

我们将蓝图可分离卷积(BSCONV)作为CNN的高效构建块。它们是由对训练有素模型的内核性质进行定量分析的动机,这些分析表明了沿深度轴的相关性的优势。根据我们的发现,我们为仅使用标准层得出有效实现的理论基础。此外,我们的方法为应用深度可分离卷积(DSC)的应用提供了彻底的理论推导,解释和理由,这些卷积(DSC)已成为许多现代网络体系结构的基础。最终,我们揭示了基于DSC的架构(例如Mobilenets)隐含地依赖跨内核相关性,而我们的BSCONV公式基于内核内相关性,因此可以更有效地分离常规卷积。大规模和细粒分类数据集的广泛实验表明,BSCONV清楚而始终如一地改善了Mobilenets和其他基于DSC的架构,而无需引入任何进一步的复杂性。对于细粒度数据集,我们最多可提高13.7个百分点。此外,如果用作标准体系结构(例如Resnets)的置换式替换,则BSCONV变体在Imagenet上也优于其香草对应物高达9.5个百分点。代码和型号可在https://github.com/zeiss-microscopy/bsconv下找到。

We introduce blueprint separable convolutions (BSConv) as highly efficient building blocks for CNNs. They are motivated by quantitative analyses of kernel properties from trained models, which show the dominance of correlations along the depth axis. Based on our findings, we formulate a theoretical foundation from which we derive efficient implementations using only standard layers. Moreover, our approach provides a thorough theoretical derivation, interpretation, and justification for the application of depthwise separable convolutions (DSCs) in general, which have become the basis of many modern network architectures. Ultimately, we reveal that DSC-based architectures such as MobileNets implicitly rely on cross-kernel correlations, while our BSConv formulation is based on intra-kernel correlations and thus allows for a more efficient separation of regular convolutions. Extensive experiments on large-scale and fine-grained classification datasets show that BSConvs clearly and consistently improve MobileNets and other DSC-based architectures without introducing any further complexity. For fine-grained datasets, we achieve an improvement of up to 13.7 percentage points. In addition, if used as drop-in replacement for standard architectures such as ResNets, BSConv variants also outperform their vanilla counterparts by up to 9.5 percentage points on ImageNet. Code and models are available under https://github.com/zeiss-microscopy/BSConv.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源