论文标题
概念感知的地理信息检索
Concept-aware Geographic Information Retrieval
论文作者
论文摘要
文本查询主要用于信息检索,以使用户自然地指定搜索目标。但是,用户和系统术语的差异可以挑战用户信息需求的识别,从而产生相关结果。我们认为,对本体论中的语言和百科全书知识的明确管理以及概念的含义(通过整合语言和百科全书知识)可以改善对搜索查询的分析,因为它可以灵活地识别用户正在搜索所采用的词汇的主题。本文提出了基于语义概念识别的信息检索支持模型。从识别搜索查询所指的本体概念的识别开始,该模型利用查询中指定的预选赛以根据可能的细粒功能选择信息项。此外,它通过暗示探索语义上相似的概念以及与通过主题关系中提到的概念的概念来支持查询扩展和重新制定。使用OnTOMAP参与性GIS收集的数据集的测试表明,该方法提供了准确的结果。
Textual queries are largely employed in information retrieval to let users specify search goals in a natural way. However, differences in user and system terminologies can challenge the identification of the user's information needs, and thus the generation of relevant results. We argue that the explicit management of ontological knowledge, and of the meaning of concepts (by integrating linguistic and encyclopedic knowledge in the system ontology), can improve the analysis of search queries, because it enables a flexible identification of the topics the user is searching for, regardless of the adopted vocabulary. This paper proposes an information retrieval support model based on semantic concept identification. Starting from the recognition of the ontology concepts that the search query refers to, this model exploits the qualifiers specified in the query to select information items on the basis of possibly fine-grained features. Moreover, it supports query expansion and reformulation by suggesting the exploration of semantically similar concepts, as well as of concepts related to those referred in the query through thematic relations. A test on a data-set collected using the OnToMap Participatory GIS has shown that this approach provides accurate results.