论文标题

置换测试的最小值最佳性

Minimax optimality of permutation tests

论文作者

Kim, Ilmun, Balakrishnan, Sivaraman, Wasserman, Larry

论文摘要

置换测试被广泛用于统计数据,每当零假设下的样品分布在某些重排中不变时,就可以对I型错误率提供有限样本的保证。尽管其受欢迎程度和经验成功越来越大,但置换测试的理论特性,尤其是其力量,在简单案例之外尚未得到充分探索。在本文中,我们试图通过提出一个一般的非反应框架来部分填补这一空白,以分析置换测试的最小值。我们提出的框架的实用性在离散和连续设置下的两样本和独立测试的背景下进行了说明。在每种情况下,我们都会根据U统计数据进行置换测试,并研究其最小值性能。我们还基于一种新的耦合思想,为置换的U统计数据开发了指数浓度界限,这可能具有独立的兴趣。在这些指数范围的基础上,我们引入了置换测试,这些测试适应未知平滑度参数而不会失去太多功率。使用更复杂的测试统计数据进一步说明了该框架,包括用于多项式测试的加权U统计量和用于密度测试的基于高斯内核的统计数据。最后,我们提供了一些模拟结果,以进一步证明置换方法是合理的。

Permutation tests are widely used in statistics, providing a finite-sample guarantee on the type I error rate whenever the distribution of the samples under the null hypothesis is invariant to some rearrangement. Despite its increasing popularity and empirical success, theoretical properties of the permutation test, especially its power, have not been fully explored beyond simple cases. In this paper, we attempt to partly fill this gap by presenting a general non-asymptotic framework for analyzing the minimax power of the permutation test. The utility of our proposed framework is illustrated in the context of two-sample and independence testing under both discrete and continuous settings. In each setting, we introduce permutation tests based on U-statistics and study their minimax performance. We also develop exponential concentration bounds for permuted U-statistics based on a novel coupling idea, which may be of independent interest. Building on these exponential bounds, we introduce permutation tests which are adaptive to unknown smoothness parameters without losing much power. The proposed framework is further illustrated using more sophisticated test statistics including weighted U-statistics for multinomial testing and Gaussian kernel-based statistics for density testing. Finally, we provide some simulation results that further justify the permutation approach.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源