论文标题

ER = EPR重新访问:在爱因斯坦 - 罗森桥的熵上

ER = EPR revisited: On the Entropy of an Einstein-Rosen Bridge

论文作者

Verlinde, Herman

论文摘要

我们提出了熵和区域之间的新链接:一个带有ER桥的永恒黑洞,带有横截面$ a $可以携带宏观数量的量子信息,或处于混合状态,熵受$ s \ leq a/4g_n $界定。我们通过使用岛屿处方和复制虫洞方法来计算黑洞熵,在ADS3和JT重力的背景下证实我们的建议。我们认为,两面黑洞的典型混合状态采用纠缠的“热混合双”状态的形式,两侧仅具有经典的相关性。我们对后页两面黑洞的von Neumann熵的结果比以前的答案较小。我们的推理意味着黑洞量子信息受拓扑保护,类似于拓扑量子内存中存储的信息。

We propose a new link between entropy and area: an eternal black hole with an ER bridge with cross-section $A$ can carry a macroscopic amount of quantum information, or be in a mixed state, with entropy bounded by $S \leq A/4G_N$. We substantiate our proposal in the context of AdS3 and JT gravity, by using the Island prescription and replica wormhole method for computing the black hole entropy. We argue that the typical mixed state of a two sided black hole takes the form of an entangled `thermo-mixed double' state with only classical correlations between the two sides. Our result for the von Neumann entropy of a post-Page time two-sided black hole is smaller by a factor of two from previous answers. Our reasoning implies that black hole quantum information is topologically protected, similar to the information stored inside a topological quantum memory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源