论文标题

关于支持向量机的精确误差分析

On the Precise Error Analysis of Support Vector Machines

论文作者

Kammoun, Abla, Alouini, Mohamed-Slim

论文摘要

本文研究了从高斯混合物分布中从高斯混合物分布中绘制的,调查了软化和硬利润支持矢量机(SVM)分类器的渐近分类器(SVM)分类器(同时具有高维和大量数据(大$ n $和$ n/p \toΔ$)的大型$ n $和$ n/p \toΔ$)。提供了对硬利润和软边缘SVM的分类错误率的尖锐预测,以及作为重要参数(例如边缘和偏置)的渐近限制。作为进一步的结果,该分析允许识别Hard-Margin SVM能够分离的最大训练样品数量。我们结果的确切性质允许对硬利润和软边缘SVM进行准确的性能比较,并更好地了解分类性能的涉及参数(例如测量值和余量参数)。我们的分析通过一组数值实验确认,建立在凸高斯Min-Max定理的基础上,并将其范围扩展到该框架以前从未研究过的新问题。

This paper investigates the asymptotic behavior of the soft-margin and hard-margin support vector machine (SVM) classifiers for simultaneously high-dimensional and numerous data (large $n$ and large $p$ with $n/p\toδ$) drawn from a Gaussian mixture distribution. Sharp predictions of the classification error rate of the hard-margin and soft-margin SVM are provided, as well as asymptotic limits of as such important parameters as the margin and the bias. As a further outcome, the analysis allow for the identification of the maximum number of training samples that the hard-margin SVM is able to separate. The precise nature of our results allow for an accurate performance comparison of the hard-margin and soft-margin SVM as well as a better understanding of the involved parameters (such as the number of measurements and the margin parameter) on the classification performance. Our analysis, confirmed by a set of numerical experiments, builds upon the convex Gaussian min-max Theorem, and extends its scope to new problems never studied before by this framework.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源