论文标题

捆绑胶gerbes上的乘法矢量字段

Multiplicative vector fields on bundle gerbes

论文作者

Krepski, Derek, Vaughan, Jennifer

论文摘要

$ s^1 $ -Bundle Gerbes的无穷小对称性用lie groupoids上的乘法矢量字段进行建模。结果表明,捆绑包上的结缔结构会引起乘数矢量场的自然水平升降,向束gerbe束,并且3个曲度给出了对水平升力的阻塞,是谎言2-翼骨的形态。证明具有连接结构的捆绑包上连接的乘数矢量场,以继承自然的谎言2-代数结构;此外,这个谎言2代数在规范上是2盘基歧管$(m,χ)$的泊松lie 2-代数的准同态,其中$χ$是连接结构的3个外观。作为此结果的应用,我们在2盘和准汉密尔顿语境中给出了Kostant公式的类似物。

Infinitesimal symmetries of $S^1$-bundle gerbes are modelled with multiplicative vector fields on Lie groupoids. It is shown that a connective structure on a bundle gerbe gives rise to a natural horizontal lift of multiplicative vector fields to the bundle gerbe, and that the 3-curvature presents the obstruction to the horizontal lift being a morphism of Lie 2-algebras. Connection-preserving multiplicative vector fields on a bundle gerbe with connective structure are shown to inherit a natural Lie 2-algebra structure; moreover, this Lie 2-algebra is canonically quasi-isomorphic to the Poisson-Lie 2-algebra of the 2-plectic base manifold $(M,χ)$, where $χ$ is the 3-curvature of the connective structure. As an application of this result, we give analogues of a formula of Kostant in the 2-plectic and quasi-Hamiltonian context.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源