论文标题

$ \ Mathcal {h} ol(γ\ cup \ text {int}(γ))$的几何几何消失的几何形状,分开$ \ mathcal {h}的子代数

Geometry of nowhere vanishing, point separating sub-algebras of $\mathcal{H}ol(Γ\cup\text{Int}(Γ))$ and zeros of Holomorphic functions

论文作者

Bose, Babhrubahan, Roy, Saikat, Sain, Debmalya

论文摘要

我们研究$ \ mathcal {h} ol(γ\ cup \ text {int}(γ))$,这是所有holomorphic函数的规范代数,这些函数定义在一些简单连接的封闭曲线$γ$ in $ \ mathbb {c} $中的简单连接的社区,配备了$γ$。我们探索无处消失的几何形状,点分离$ \ Mathcal {h} ol(γ\ cup \ text {int}(γ))$的子代数。我们表征了$γ$分析的上述子代数的极端点和裸露点。我们还通过使用Birkhoff-James正交性技术来表征这些子代数中元素的平滑度,而无需限制$γ$。作为我们研究的高潮,我们用一些经典的复杂分析概念来吸收上述子代数的几何形状,并建立伯克霍夫 - 詹姆斯正交性与霍洛型功能的零之间的联系。

We study $ \mathcal{H}ol(Γ\cup\text{Int}(Γ)) $, the normed algebra of all holomorphic functions defined on some simply connected neighbourhood of a simple closed curve $Γ$ in $\mathbb{C} $, equipped with the supremum norm on $ Γ$. We explore the geometry of nowhere vanishing, point separating sub-algebras of $ \mathcal{H}ol(Γ\cup \text{Int}(Γ)) $. We characterize the extreme points and the exposed points of the unit balls of the said sub-algebras for $Γ$ analytic. We also characterize the smoothness of an element in these sub-algebras by using Birkhoff-James orthogonality techniques without any restriction on $Γ$. As a culmination of our study, we assimilate the geometry of the aforesaid sub-algebras with some classical concepts of complex analysis and establish a connection between Birkhoff-James orthogonality and zeros of holomorphic functions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源