论文标题

CL-ADMM:MEC中资源管理的基于合作学习的优化框架

CL-ADMM: A Cooperative Learning Based Optimization Framework for Resource Management in MEC

论文作者

Zhong, Xiaoxiong, Wang, Xinghan, Li, Li, Yang, Yuanyuan, Qin, Yang, Yang, Tingting, Zhang, Bin, Zhang, Weizhe

论文摘要

我们考虑移动边缘计算(MEC)中智能有效的资源管理框架的问题,该框架可以减少延迟和能源消耗,具有分布式优化和有效的拥塞避免机制。在本文中,我们从乘数的交替方向方法(ADMM)观点(称为CL-ADMM框架)提出了MEC中资源管理的合作学习框架。首先,为了在小组中有效地缓存任务,提出了一种新的任务流行度估算方案,该方案基于半马尔可夫过程模型,然后建立了一种贪婪的任务合作的卡契机制,可以有效地减少延迟和能源消耗。其次,为了解决集团拥塞的解决,提出了基于合作改进的Q学习的动态任务迁移计划,这可以有效地减少延迟并减轻拥塞。第三,为了最大程度地减少一组资源分配的延迟和能耗,我们将其作为一个优化问题,与大量变量相比,然后利用基于ADMM的新方案来解决此问题,这可以通过新的辅助变量来减少问题的复杂性,这些子问题都可以通过启用次数来求解,并且可以使用primal andal anderal来求解。然后,我们通过使用Lyapunov理论证明了收敛性。数值结果证明了CL-ADMM的有效性,并且可以有效地减少MEC的延迟和能耗。

We consider the problem of intelligent and efficient resource management framework in mobile edge computing (MEC), which can reduce delay and energy consumption, featuring distributed optimization and efficient congestion avoidance mechanism. In this paper, we present a Cooperative Learning framework for resource management in MEC from an Alternating Direction Method of Multipliers (ADMM) perspective, called CL-ADMM framework. First, in order to caching task efficiently in a group, a novel task popularity estimating scheme is proposed, which is based on semi-Markov process model, then a greedy task cooperative caching mechanism has been established, which can effectively reduce delay and energy consumption. Secondly, for addressing group congestion, a dynamic task migration scheme based on cooperative improved Q-learning is proposed, which can effectively reduce delay and alleviate congestion. Thirdly, for minimizing delay and energy consumption for resources allocation in a group, we formulate it as an optimization problem with a large number of variables, and then exploit a novel ADMM based scheme to address this problem, which can reduce the complexity of problem with a new set of auxiliary variables, these sub-problems are all convex problems, and can be solved by using a primal-dual approach, guaranteeing its convergences. Then we prove that the convergence by using Lyapunov theory. Numerical results demonstrate the effectiveness of the CL-ADMM and it can effectively reduce delay and energy consumption for MEC.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源