论文标题

在群相对双曲机基团上

On cubulated relatively hyperbolic groups

论文作者

Oregón-Reyes, Eduardo

论文摘要

我们表明,如果外围亚组几乎以与肘的兼容的方式,则适当和共同的组相对双曲线基团几乎是特殊的。这扩展了立方双曲线组的AGOL结果,并适用于各种外围亚组。特别是,我们推断出虚拟的特殊性,以适当和相互平衡的组相对于几乎是阿贝尔群体。另一个结果,通过使用Martin和Steenbock的定理,我们可以通过有限的许多实际上紧凑的特殊群体获得的群体获得虚拟的特殊性,该产品通过满足经典$ C'(1/6)$的有限的关系套件(1/6)$ - 小取消条件。

We show that properly and cocompactly cubulated relatively hyperbolic groups are virtually special, provided the peripheral subgroups are virtually special in a way that is compatible with the cubulation. This extends Agol's result for cubulated hyperbolic groups, and applies to a wide range of peripheral subgroups. In particular, we deduce virtual specialness for properly and cocompactly cubulated groups that are hyperbolic relative to virtually abelian groups. As another consequence, by using a theorem of Martin and Steenbock we obtain virtual specialness for groups obtained as a quotient of a free product of finitely many virtually compact special groups by a finite set of relators satisfying the classical $C'(1/6)$-small cancellation condition.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源