论文标题
通过优化快速调制启用了可启用可重新配置的量子发射器
Spectrally reconfigurable quantum emitters enabled by optimized fast modulation
论文作者
论文摘要
塑造光子发射的能力有助于不同的物理系统之间的强光子介导的相互作用,从而在量子信息处理,仿真和通信中实现了应用。固态平台(例如颜色中心,稀土离子和量子点)中的光谱控制对于在片上实现此类应用特别有吸引力。在这里,我们建议使用频率调制的光学转换来用于单个光子发射的光谱工程。使用散射 - 矩阵形式主义,我们发现,当调制的速度比其光学寿命快的速度更快时,可以将其视为具有广泛可重构光子光谱的单光子源,该光谱可与标准的数值优化技术相差。为了实现这种光谱控制方案的实验演示,我们研究了碳化硅空缺的鲜明调谐特性,硅碳化物是一个颜色中心,有望获得光学量子信息处理技术。我们发现,硅空缺具有出色的光谱稳定性和调音特性,使我们能够探究其快速调制方案,观察理论上预测的两光子相关性,并展示光谱工程。我们的结果表明,频率调制是一种强大的技术,用于生成对单个光子的光谱和时间特性的前所未有的新光状态。
The ability to shape photon emission facilitates strong photon-mediated interactions between disparate physical systems, thereby enabling applications in quantum information processing, simulation and communication. Spectral control in solid state platforms such as color centers, rare earth ions, and quantum dots is particularly attractive for realizing such applications on-chip. Here we propose the use of frequency-modulated optical transitions for spectral engineering of single photon emission. Using a scattering-matrix formalism, we find that a two-level system, when modulated faster than its optical lifetime, can be treated as a single-photon source with a widely reconfigurable photon spectrum that is amenable to standard numerical optimization techniques. To enable the experimental demonstration of this spectral control scheme, we investigate the Stark tuning properties of the silicon vacancy in silicon carbide, a color center with promise for optical quantum information processing technologies. We find that the silicon vacancy possesses excellent spectral stability and tuning characteristics, allowing us to probe its fast modulation regime, observe the theoretically-predicted two-photon correlations, and demonstrate spectral engineering. Our results suggest that frequency modulation is a powerful technique for the generation of new light states with unprecedented control over the spectral and temporal properties of single photons.