论文标题

多模式量子计量学中海森堡缩放精度的典型性

Typicality of Heisenberg scaling precision in multi-mode quantum metrology

论文作者

Gramegna, Giovanni, Triggiani, Danilo, Facchi, Paolo, Narducci, Frank A., Tamma, Vincenzo

论文摘要

我们提出了一个达到Heisenberg缩放精度的测量设置,以估计任何分布式参数$φ$(不一定是一个阶段)编码为仅由被动元素组成的通用$ M $ port线性网络。该计划可以从实验的角度轻松实施,因为它仅采用高斯州和高斯测量。由于考虑了估计问题的完全普遍性,因此可以预测,需要执行一种自适应程序,该程序涉及所使用的输入状态和在输出时执行的测量;我们表明这不是必要的:海森堡的缩放精度仍然可以通过调整一个阶段来实现。非适应阶段仅影响乘数倍增的因素倍数缩放精度:我们表明,对于$ m $的巨大值和非适应性阶段的大量值(无偏见的)选择,该前因子会采用典型值,可以通过将linear网络的编码来控制,该值可以控制,该值可以通过linear网络中的编码来控制。

We propose a measurement setup reaching Heisenberg scaling precision for the estimation of any distributed parameter $φ$ (not necessarily a phase) encoded into a generic $M$-port linear network composed only of passive elements. The scheme proposed can be easily implemented from an experimental point of view since it employs only Gaussian states and Gaussian measurements. Due to the complete generality of the estimation problem considered, it was predicted that one would need to carry out an adaptive procedure which involves both the input states employed and the measurement performed at the output; we show that this is not necessary: Heisenberg scaling precision is still achievable by only adapting a single stage. The non-adapted stage only affects the value of a pre-factor multiplying the Heisenberg scaling precision: we show that, for large values of $M$ and a random (unbiased) choice of the non-adapted stage, this pre-factor takes a typical value which can be controlled through the encoding of the parameter $φ$ into the linear network.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源