论文标题

使用深神经网络进行数字水印的一般方法

A General Approach for Using Deep Neural Network for Digital Watermarking

论文作者

Ming, Yurui, Ding, Weiping, Cao, Zehong, Lin, Chin-Teng

论文摘要

物联网的技术(IoT)促进了数字内容,例如以大量方式获取的图像。但是,从隐私或立法角度来看仍然需要智力内容保护。在本文中,我们提出了一种基于一般的深神经网络(DNN)水印方法来实现这一目标。我们没有训练神经网络来保护特定图像,而是在图像集上进行训练,并使用训练有素的模型以庞大的方式保护独特的测试图像。主观和客观方面的评估都证实了我们提出的方法的至高无上和实用性。为了证明这种一般神经水印机制的鲁棒性,将常用的操作应用于水印图像,以检查相应的提取水印,该水印仍然保留了足够的可识别性状。据我们所知,我们是第一个提出一种使用DNN进行水印的一般方法。考虑到其绩效和经济,可以得出结论,随后的研究将我们在利用DNN进行智力内容保护方面的工作推广是一种有希望的研究趋势。

Technologies of the Internet of Things (IoT) facilitate digital contents such as images being acquired in a massive way. However, consideration from the privacy or legislation perspective still demands the need for intellectual content protection. In this paper, we propose a general deep neural network (DNN) based watermarking method to fulfill this goal. Instead of training a neural network for protecting a specific image, we train on an image set and use the trained model to protect a distinct test image set in a bulk manner. Respective evaluations both from the subjective and objective aspects confirm the supremacy and practicability of our proposed method. To demonstrate the robustness of this general neural watermarking mechanism, commonly used manipulations are applied to the watermarked image to examine the corresponding extracted watermark, which still retains sufficient recognizable traits. To the best of our knowledge, we are the first to propose a general way to perform watermarking using DNN. Considering its performance and economy, it is concluded that subsequent studies that generalize our work on utilizing DNN for intellectual content protection is a promising research trend.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源