论文标题
Cohen-Macaulay边缘加权的边缘理想非常覆盖的图形
Cohen-Macaulay edge-weighted edge ideals of very well-covered graphs
论文作者
论文摘要
我们表征了非常完善的图形的未混合和Cohen-MaCaulay边缘加权理想。我们还提供了定向图的示例,这些图形具有未混合和非Cohen-Macaulay顶点加权的边缘理想,而其底层图的边缘理想是Cohen-Macaulay。这反驳了Pitones,Reyes和Toledo提出的猜想。
We characterize unmixed and Cohen-Macaulay edge-weighted edge ideals of very well-covered graphs. We also provide examples of oriented graphs which have unmixed and non-Cohen-Macaulay vertex-weighted edge ideals, while the edge ideal of their underlying graph is Cohen-Macaulay. This disproves a conjecture posed by Pitones, Reyes and Toledo.