论文标题
棋盘格晶格上量子二聚体模型的精确解决方案和相关性
Exact Solution and Correlations of a Quantum Dimer Model on the Checkerboard Lattice
论文作者
论文摘要
我们为{\ em non-biptite}和{\ em non-planar}核对板晶格的特殊二聚体模型介绍了分析结果,该结果不允许对角链路周围的并行二聚体。我们{\ em alcy}在周期性边界条件下计算有限棋盘板晶格上的封闭二聚体覆盖物的数量,并确定所有二聚体二聚体相关性。后者被发现消失了一定距离。我们发现,该可解决的模型尽管是非平面的,但仍与众所周知的范式设定的平面对应物保持着亲密关系,这些范式允许精确映射到$ \ Mathbb {Z} _2 _2 $ lattice Gauge理论。
We present analytic results for a special dimer model on the {\em non-bipartite} and {\em non-planar} checkerboard lattice that does not allow for parallel dimers surrounding diagonal links. We {\em exactly} calculate the number of closed packed dimer coverings on finite checkerboard lattices under periodic boundary conditions, and determine all dimer-dimer correlations. The latter are found to vanish beyond a certain distance. We find that this solvable model, despite being non-planar, is in close kinship with well-known paradigm-setting planar counterparts that allow exact mappings to $\mathbb{Z}_2$ lattice gauge theory.