论文标题
模量 - $ p $参数的拓扑表征以及对项链分裂的影响
A Topological Characterization of Modulo-$p$ Arguments and Implications for Necklace Splitting
论文作者
论文摘要
PPA- $ P $的课程最近引起了人们的关注,因为它们是捕获$ P $ Thieves的项链分裂的复杂性的主要候选人,Prime $ p $。但是,这些阶级尚不清楚拓扑性质的完全问题,这阻碍了解决项链分裂问题的复杂性的任何进步。相反,拓扑问题在获得PPAD和PPA的完整性结果方面一直是关键的,例如找到NASH平衡的PPAD完整性[Daskalakis等,2009; Chen等,2009b],2009b]以及两种项链的PPA兼容性以及2 thieves filos filos filos-filos-filos-sikikas and goldbass-rats-rats-rats-rats-rats-rats-rats-rats-rats-rats-rats-rats-rats-rats-rats-rats-rats-rats-rats-rats-rats-ratbergbergberggberg,2019年。 在本文中,我们提供了PPA- $ P $类的第一个拓扑表征。首先,我们表明,与Tucker's Lemma的简单概括相关的计算问题,称为$ p $ -polygon-tucker以及相关的Borsuk-ulam-type定理,$ p $ -polygon-borsuk-ulam,是ppa- $ p $ p $ -poplete。然后,我们证明了众所周知的BSS定理的计算版[Barany等,1981]以及相关的BSS-Tucker问题是PPA- $ P $ -COMPLETE。最后,使用Tucker的引理(称为$ \ Mathbb {z} _p $ -star-tucker)的不同概括,我们证明这是PPA- $ P $ -COMPLETE,我们证明$ P $ - thief项链splacting in ppa- $ p $。后一个结果为项链拆分定理提供了新的组合证明,这是这种性质的唯一证明,而不是Meunier [2014]。 我们所有的遏制结果都是通过$ \ mathbb {z} _p $ - Tucker's Lemma的新组合证明获得的,这是Freund and Todd [1981]对Tucker's Lemma的标准组合证明的自然概括。我们认为,这种新的证明技术具有独立的兴趣。
The classes PPA-$p$ have attracted attention lately, because they are the main candidates for capturing the complexity of Necklace Splitting with $p$ thieves, for prime $p$. However, these classes were not known to have complete problems of a topological nature, which impedes any progress towards settling the complexity of the Necklace Splitting problem. On the contrary, topological problems have been pivotal in obtaining completeness results for PPAD and PPA, such as the PPAD-completeness of finding a Nash equilibrium [Daskalakis et al., 2009, Chen et al., 2009b] and the PPA-completeness of Necklace Splitting with 2 thieves [Filos-Ratsikas and Goldberg, 2019]. In this paper, we provide the first topological characterization of the classes PPA-$p$. First, we show that the computational problem associated with a simple generalization of Tucker's Lemma, termed $p$-polygon-Tucker, as well as the associated Borsuk-Ulam-type theorem, $p$-polygon-Borsuk-Ulam, are PPA-$p$-complete. Then, we show that the computational version of the well-known BSS Theorem [Barany et al., 1981], as well as the associated BSS-Tucker problem are PPA-$p$-complete. Finally, using a different generalization of Tucker's Lemma (termed $\mathbb{Z}_p$-star-Tucker), which we prove to be PPA-$p$-complete, we prove that $p$-thief Necklace Splitting is in PPA-$p$. This latter result gives a new combinatorial proof for the Necklace Splitting theorem, the only proof of this nature other than that of Meunier [2014]. All of our containment results are obtained through a new combinatorial proof for $\mathbb{Z}_p$-versions of Tucker's lemma that is a natural generalization of the standard combinatorial proof of Tucker's lemma by Freund and Todd [1981]. We believe that this new proof technique is of independent interest.