论文标题

图形匹配与离群值的零分配约束

Zero-Assignment Constraint for Graph Matching with Outliers

论文作者

Wang, Fudong, Xue, Nan, Yu, Jin-Gang, Xia, Gui-Song

论文摘要

图形匹配(GM)是计算机视觉和模式识别的一个长期问题,在实际应用中仍然存在许多混乱的异常值。为了解决此问题,我们提出了在存在异常值的情况下解决图形匹配问题的零分配约束(ZAC)。潜在的想法是通过将零值向量分配给获得的最佳对应矩阵中的潜在异常值来抑制异常值的匹配。我们为问题提供了详尽的理论分析,即带有ZAC的GM,并确定带有和没有离群值的GM问题本质上是不同的,这使我们能够提出足够的条件来构建有效且合理的目标功能。因此,我们设计了一种有效的异常表现算法,以显着减少由许多异常值引起的不正确或冗余匹配。广泛的实验表明,我们的方法可以在准确性和效率方面达到最新的性能,尤其是在存在众多异常值的情况下。

Graph matching (GM), as a longstanding problem in computer vision and pattern recognition, still suffers from numerous cluttered outliers in practical applications. To address this issue, we present the zero-assignment constraint (ZAC) for approaching the graph matching problem in the presence of outliers. The underlying idea is to suppress the matchings of outliers by assigning zero-valued vectors to the potential outliers in the obtained optimal correspondence matrix. We provide elaborate theoretical analysis to the problem, i.e., GM with ZAC, and figure out that the GM problem with and without outliers are intrinsically different, which enables us to put forward a sufficient condition to construct valid and reasonable objective function. Consequently, we design an efficient outlier-robust algorithm to significantly reduce the incorrect or redundant matchings caused by numerous outliers. Extensive experiments demonstrate that our method can achieve the state-of-the-art performance in terms of accuracy and efficiency, especially in the presence of numerous outliers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源