论文标题
主动学习方法以优化实验控制
Active Learning Approach to Optimization of Experimental Control
论文作者
论文摘要
在这项工作中,我们提出了一种基于一般机器学习的方案,以优化实验控制。该方法利用神经网络来学习控制参数与控制目标之间的关系,可以通过这些关系获得最佳控制参数。这种方法的主要挑战是从实验获得的标记数据并不丰富。我们计划的核心思想是利用积极的学习来克服这一困难。作为演示的例子,我们将方法应用于冷原子中的蒸发冷却实验。我们首先使用模拟数据测试了我们的方法,然后将我们的方法应用于实际实验。我们证明我们的方法可以在数百个实验跑中成功达到最佳性能。我们的方法不需要将实验系统作为先验知识,并且对于不同系统中的实验控制是普遍的。
In this work we present a general machine learning based scheme to optimize experimental control. The method utilizes the neural network to learn the relation between the control parameters and the control goal, with which the optimal control parameters can be obtained. The main challenge of this approach is that the labeled data obtained from experiments are not abundant. The central idea of our scheme is to use the active learning to overcome this difficulty. As a demonstration example, we apply our method to control evaporative cooling experiments in cold atoms. We have first tested our method with simulated data and then applied our method to real experiments. We demonstrate that our method can successfully reach the best performance within hundreds of experimental runs. Our method does not require knowledge of the experimental system as a prior and is universal for experimental control in different systems.