论文标题
通过最大程度地减少判别器特征空间中的fréchet距离而产生图像
Image Generation Via Minimizing Fréchet Distance in Discriminator Feature Space
论文作者
论文摘要
对于给定的图像生成问题,固有的图像歧管通常是较低的维度。我们使用这样的直觉,即通过在代表歧管的小维特征空间中最小化真实图像和生成的图像之间的分布距离来训练GAN发电机要比原始像素空间上的分布距离要好得多。我们将GAN Incisiminator的特征空间用于这种表示。对于分配距离,我们采用了两种选择之一:Fréchet距离或直接最佳运输(OT);这些分别使我们采用了两种新的GAN方法:Fréchet-Gan和OT-Gan。采用Fréchet距离的想法来自Fréchet成立距离作为图像生成中稳固的评估度量的成功。 Fréchet-Gan在几种方面都有吸引力。我们提出了一种有效的,数值稳定的方法来计算Fréchet距离及其梯度。 FRéchet距离估计需要的计算时间明显少于OT。这使得Fréchet-Gan可以在训练中使用更大的迷你批量尺寸。更重要的是,我们对许多基准数据集进行了实验,并表明Fréchet-Gan(特别是)与基于Wasserstein距离的现有代表性原始和双GAN方法相比,Fréchet-Gan(尤其是OT-GAN)具有明显更好的图像产生能力。
For a given image generation problem, the intrinsic image manifold is often low dimensional. We use the intuition that it is much better to train the GAN generator by minimizing the distributional distance between real and generated images in a small dimensional feature space representing such a manifold than on the original pixel-space. We use the feature space of the GAN discriminator for such a representation. For distributional distance, we employ one of two choices: the Fréchet distance or direct optimal transport (OT); these respectively lead us to two new GAN methods: Fréchet-GAN and OT-GAN. The idea of employing Fréchet distance comes from the success of Fréchet Inception Distance as a solid evaluation metric in image generation. Fréchet-GAN is attractive in several ways. We propose an efficient, numerically stable approach to calculate the Fréchet distance and its gradient. The Fréchet distance estimation requires a significantly less computation time than OT; this allows Fréchet-GAN to use much larger mini-batch size in training than OT. More importantly, we conduct experiments on a number of benchmark datasets and show that Fréchet-GAN (in particular) and OT-GAN have significantly better image generation capabilities than the existing representative primal and dual GAN approaches based on the Wasserstein distance.