论文标题
在线社交网络中的持续活动最大化
Continuous Activity Maximization in Online Social Networks
论文作者
论文摘要
活动最大化是在给定社交网络中寻求一小部分用户的一项任务,这使得预期的总活动收益最大化。这是许多实际应用的概括。在本文中,我们将活动最大化问题扩展到了一般营销策略$ \ vec {x} $下,这是晶格空间的$ d $二维向量,并且具有概率$ h_u(\ vec {x})$激活节点$ u $作为种子。基于此,我们提出了连续的活动最大化(CAM)问题,其中域是连续的,我们选择符合一定概率分布的种子集。研究有关晶格约束下信息扩散的问题是一个新主题,因此,我们在这里系统地解决了问题。首先,我们分析了CAM的硬度以及如何准确有效地计算CAM的目标功能。我们证明该目标函数是单调的,但不是Dr-bubmodular,而不是Dr-supmomemular。然后,我们开发了CAM的单调和DR-Submodular下界和上限,并应用采样技术来为CAM(其下限和上限)设计三个无偏估计器。接下来,根据IMM算法和三明治近似框架进行了改编,我们获得了数据依赖性近似值。可以将此过程视为解决晶格上这些最大化问题的一般方法,而不是DR-Submodular。最后,我们在三个现实世界数据集上进行实验,以评估我们提出的算法的正确性和有效性。
Activity maximization is a task of seeking a small subset of users in a given social network that makes the expected total activity benefit maximized. This is a generalization of many real applications. In this paper, we extend activity maximization problem to that under the general marketing strategy $\vec{x}$, which is a $d$-dimensional vector from a lattice space and has probability $h_u(\vec{x})$ to activate a node $u$ as a seed. Based on that, we propose the continuous activity maximization (CAM) problem, where the domain is continuous and the seed set we select conforms to a certain probability distribution. It is a new topic to study the problem about information diffusion under the lattice constraint, thus, we address the problem systematically here. First, we analyze the hardness of CAM and how to compute the objective function of CAM accurately and effectively. We prove this objective function is monotone, but not DR-submodular and not DR-supermodular. Then, we develop a monotone and DR-submodular lower bound and upper bound of CAM, and apply sampling techniques to design three unbiased estimators for CAM, its lower bound and upper bound. Next, adapted from IMM algorithm and sandwich approximation framework, we obtain a data-dependent approximation ratio. This process can be considered as a general method to solve those maximization problem on lattice but not DR-submodular. Last, we conduct experiments on three real-world datasets to evaluate the correctness and effectiveness of our proposed algorithms.