论文标题

高能量物理探测器中粒子重建的图形神经网络

Graph Neural Networks for Particle Reconstruction in High Energy Physics detectors

论文作者

Ju, Xiangyang, Farrell, Steven, Calafiura, Paolo, Murnane, Daniel, Prabhat, Gray, Lindsey, Klijnsma, Thomas, Pedro, Kevin, Cerati, Giuseppe, Kowalkowski, Jim, Perdue, Gabriel, Spentzouris, Panagiotis, Tran, Nhan, Vlimant, Jean-Roch, Zlokapa, Alexander, Pata, Joosep, Spiropulu, Maria, An, Sitong, Aurisano, Adam, Hewes, V, Tsaris, Aristeidis, Terao, Kazuhiro, Usher, Tracy

论文摘要

高能量物理学中的模式识别问题与计算机视觉中的传统机器学习应用大不相同。重建算法识别和测量高能碰撞中产生的颗粒的运动学特性,并记录在复杂的探测器系统中。两个关键的应用是在跟踪探测器和量热计中粒子阵雨的重建中的带电粒子轨迹的重建。这两个问题具有独特的挑战和特征,但两者都具有很高的维度,高度的稀疏性和复杂的几何布局。图形神经网络(GNN)是一类相对较新的深度学习体系结构,可以有效地处理此类数据,从而使科学家能够将域知识纳入图形结构,并学习强大的表示,利用该结构来识别感兴趣的模式。在这项工作中,我们证明了GNN在这两个不同的粒子重建问题上的适用性。

Pattern recognition problems in high energy physics are notably different from traditional machine learning applications in computer vision. Reconstruction algorithms identify and measure the kinematic properties of particles produced in high energy collisions and recorded with complex detector systems. Two critical applications are the reconstruction of charged particle trajectories in tracking detectors and the reconstruction of particle showers in calorimeters. These two problems have unique challenges and characteristics, but both have high dimensionality, high degree of sparsity, and complex geometric layouts. Graph Neural Networks (GNNs) are a relatively new class of deep learning architectures which can deal with such data effectively, allowing scientists to incorporate domain knowledge in a graph structure and learn powerful representations leveraging that structure to identify patterns of interest. In this work we demonstrate the applicability of GNNs to these two diverse particle reconstruction problems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源