论文标题
Meta-Cotgan:用于改善对抗文本生成的元合作培训范式
Meta-CoTGAN: A Meta Cooperative Training Paradigm for Improving Adversarial Text Generation
论文作者
论文摘要
可以产生具有足够多样性的高质量文本的培训生成模型对于自然语言生成(NLG)社区来说是一个重要的开放问题。最近,生成的对抗模型已广泛应用于文本生成任务上,在该任务中,受对抗训练的发电机减轻了传统最大似然方法所经历的暴露偏见,并带来了有希望的发电质量。但是,由于臭名昭著的对抗训练模式崩溃的缺陷,受对抗训练的发电机面临着质量多样性的权衡,即,发电机模型倾向于严重牺牲发电的多样性,以提高发电质量。在本文中,我们提出了一种新颖的方法,旨在通过有效减速模式的对抗性训练来提高对抗性文本生成的性能。为此,我们介绍了一个合作培训范式,其中语言模型与发电机进行了协作培训,并利用语言模型有效地塑造了发电机的数据分布,以防止模式崩溃。此外,我们没有以原则上的方式参与发电机的合作更新,而是制定了一种元学习机制,在该机制中,对发电机的合作更新是一项高级元任务,并直接确保在对抗性更新后发电机的参数保持抵抗力抵抗模式崩溃。在实验中,我们证明我们提出的方法可以有效地减慢对抗文本发生器模式崩溃的速度。总体而言,我们所提出的方法能够优于基线方法,从作用域中的发电质量和多样性方面,其差距显着。
Training generative models that can generate high-quality text with sufficient diversity is an important open problem for Natural Language Generation (NLG) community. Recently, generative adversarial models have been applied extensively on text generation tasks, where the adversarially trained generators alleviate the exposure bias experienced by conventional maximum likelihood approaches and result in promising generation quality. However, due to the notorious defect of mode collapse for adversarial training, the adversarially trained generators face a quality-diversity trade-off, i.e., the generator models tend to sacrifice generation diversity severely for increasing generation quality. In this paper, we propose a novel approach which aims to improve the performance of adversarial text generation via efficiently decelerating mode collapse of the adversarial training. To this end, we introduce a cooperative training paradigm, where a language model is cooperatively trained with the generator and we utilize the language model to efficiently shape the data distribution of the generator against mode collapse. Moreover, instead of engaging the cooperative update for the generator in a principled way, we formulate a meta learning mechanism, where the cooperative update to the generator serves as a high level meta task, with an intuition of ensuring the parameters of the generator after the adversarial update would stay resistant against mode collapse. In the experiment, we demonstrate our proposed approach can efficiently slow down the pace of mode collapse for the adversarial text generators. Overall, our proposed method is able to outperform the baseline approaches with significant margins in terms of both generation quality and diversity in the testified domains.