论文标题

优先批次贝叶斯优化

Preferential Batch Bayesian Optimization

论文作者

Siivola, Eero, Dhaka, Akash Kumar, Andersen, Michael Riis, Gonzalez, Javier, Moreno, Pablo Garcia, Vehtari, Aki

论文摘要

贝叶斯优化(BO)的大多数研究都集中在\ emph {Direct反馈}方案上,其中人们可以访问某些昂贵的评估目标的精确值。这个方向主要是由BO在机器学习超参数配置问题中驱动的。但是,在诸如建模人类偏好,A/B测试或推荐系统之类的域中,需要通过排名或成对比较获得的方法,可以用\ emph {优先反馈}替换直接反馈。在这项工作中,我们提出了优先批次贝叶斯优化(PBBO),这是一个新框架,允许在两个或多个点组的任何类型的并行优先反馈中找到最佳的潜在功能。我们通过使用具有专门设计的可能性的高斯流程模型来实现并行有效的数据收集机制,这在现代机器学习中是关键。我们展示了在此框架下开发的收购如何在贝叶斯优化中推广和增强以前的方法,从而将这些技术的使用扩展到更广泛的域。一项广泛的模拟研究显示了这种方法的好处,包括模拟功能和四个实际数据集。

Most research in Bayesian optimization (BO) has focused on \emph{direct feedback} scenarios, where one has access to exact values of some expensive-to-evaluate objective. This direction has been mainly driven by the use of BO in machine learning hyper-parameter configuration problems. However, in domains such as modelling human preferences, A/B tests, or recommender systems, there is a need for methods that can replace direct feedback with \emph{preferential feedback}, obtained via rankings or pairwise comparisons. In this work, we present preferential batch Bayesian optimization (PBBO), a new framework that allows finding the optimum of a latent function of interest, given any type of parallel preferential feedback for a group of two or more points. We do so by using a Gaussian process model with a likelihood specially designed to enable parallel and efficient data collection mechanisms, which are key in modern machine learning. We show how the acquisitions developed under this framework generalize and augment previous approaches in Bayesian optimization, expanding the use of these techniques to a wider range of domains. An extensive simulation study shows the benefits of this approach, both with simulated functions and four real data sets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源