论文标题

贪婪的人:朝着贪婪的超级网快速一击NAS

GreedyNAS: Towards Fast One-Shot NAS with Greedy Supernet

论文作者

You, Shan, Huang, Tao, Yang, Mingmin, Wang, Fei, Qian, Chen, Zhang, Changshui

论文摘要

训练超网络对于一次性神经体系结构搜索(NAS)方法很重要,因为它是不同体系结构(路径)的基本性能估计器。当前方法主要认为,超级网应在所有路径上给出合理的排名。因此,他们平等地对待所有路径,并竭尽全力训练路径。但是,单个超级网络在如此庞大的搜索空间(例如$ 7^{21} $)上进行准确评估是很苛刻的。在本文中,我们没有涵盖所有路径,而是通过鼓励它更多地专注于评估那些潜在的良好范围,而是使用验证数据的替代部分来评估这些路径的负担。具体而言,在训练过程中,我们提出了一种以排斥反应为单位的多路抽样策略,并贪婪地过滤了弱路径。因此,由于训练空间从各个路径上缩小到那些潜在的良好方法,因此训练效率得到了提高。此外,我们通过引入经验候选路径池进一步采取探索和剥削政策。我们提出的方法greedynas易于遵循,并且对ImageNet数据集的实验结果表明,在相同的搜索空间和flops或潜伏期水平下,它可以实现更好的TOP-1精度,但只有$ \ sim $ \ sim $ 60 \%的超级网训练成本。通过在更大的空间上进行搜索,我们的贪婪还可以获得新的最先进的体系结构。

Training a supernet matters for one-shot neural architecture search (NAS) methods since it serves as a basic performance estimator for different architectures (paths). Current methods mainly hold the assumption that a supernet should give a reasonable ranking over all paths. They thus treat all paths equally, and spare much effort to train paths. However, it is harsh for a single supernet to evaluate accurately on such a huge-scale search space (e.g., $7^{21}$). In this paper, instead of covering all paths, we ease the burden of supernet by encouraging it to focus more on evaluation of those potentially-good ones, which are identified using a surrogate portion of validation data. Concretely, during training, we propose a multi-path sampling strategy with rejection, and greedily filter the weak paths. The training efficiency is thus boosted since the training space has been greedily shrunk from all paths to those potentially-good ones. Moreover, we further adopt an exploration and exploitation policy by introducing an empirical candidate path pool. Our proposed method GreedyNAS is easy-to-follow, and experimental results on ImageNet dataset indicate that it can achieve better Top-1 accuracy under same search space and FLOPs or latency level, but with only $\sim$60\% of supernet training cost. By searching on a larger space, our GreedyNAS can also obtain new state-of-the-art architectures.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源