论文标题

重生树的合奏

Born-Again Tree Ensembles

论文作者

Vidal, Thibaut, Pacheco, Toni, Schiffer, Maximilian

论文摘要

在金融,医学和刑事司法中使用机器学习算法会对人类的生命产生深远的影响。结果,对可解释的机器学习的研究已迅速发展,以更好地控制和解决可能的错误和偏见来源。树的合奏在各个领域都提供了良好的预测质量,但是同时使用多棵树可降低合奏的解释性。在这种背景下,我们研究了重生树的合奏,即,构建最小尺寸的单个决策树的过程,该过程在其整个特征空间中重现了与给定的树集合完全相同的行为。为了找到这样的树,我们开发了一种基于动态编程的算法,该算法利用复杂的修剪和边界规则来减少递归调用的数量。该算法为许多实际兴趣的数据集生成了最佳的重生树,从而导致分类器通常更简单,更容易解释而没有任何其他形式的折衷。

The use of machine learning algorithms in finance, medicine, and criminal justice can deeply impact human lives. As a consequence, research into interpretable machine learning has rapidly grown in an attempt to better control and fix possible sources of mistakes and biases. Tree ensembles offer a good prediction quality in various domains, but the concurrent use of multiple trees reduces the interpretability of the ensemble. Against this background, we study born-again tree ensembles, i.e., the process of constructing a single decision tree of minimum size that reproduces the exact same behavior as a given tree ensemble in its entire feature space. To find such a tree, we develop a dynamic-programming based algorithm that exploits sophisticated pruning and bounding rules to reduce the number of recursive calls. This algorithm generates optimal born-again trees for many datasets of practical interest, leading to classifiers which are typically simpler and more interpretable without any other form of compromise.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源