论文标题

四维量子厅物理学的耗散类似物

Dissipative analog of four-dimensional quantum Hall physics

论文作者

Terrier, Fanny, Kunst, Flore K.

论文摘要

四维量子大厅(QH)模型通常依赖于合成维度进行实验中的模拟。在这里,我们研究了一个QH系统,该系统具有三维Weyl锥在其边界上的非平凡构型。我们提出了该模型的三维类似物的形式,该模型的形式是由非热剂(NH)Hamiltonian描述的,在长期极限中,该模型在大量模型中表现出四维QH模型的异常边界物理学。 NH WSM的拓扑是由三维绕组数捕获的,该数字与存活的Weyl节点的总手性直接相关。在采用开放边界条件后,我们发现了具有系统尺寸的尺度的顺序,我们找到了出色的点。

Four-dimensional quantum Hall (QH) models usually rely on synthetic dimensions for their simulation in experiment. Here, we study a QH system which features a nontrivial configuration of three-dimensional Weyl cones on its boundaries. We propose a three-dimensional analog of this model in the form of a dissipative Weyl semimetal (WSM) described by a non-Hermitian (NH) Hamiltonian, which in the long-time limit manifests the anomalous boundary physics of the four-dimensional QH model in the bulk spectrum. The topology of the NH WSM is captured by a three-dimensional winding number whose value is directly related to the total chirality of the surviving Weyl nodes. Upon taking open boundary conditions, instead of Fermi arcs, we find exceptional points with an order that scales with system size.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源