论文标题

曲线上的非全球生成的捆绑包

Non-globally generated bundles on curves

论文作者

Kopper, John, Mandal, Sayanta

论文摘要

我们描述了稳定捆绑包的轨迹属于光滑的属$ g $曲线,该曲线未能全球生成。对于每个等级$ r $和度$ d $,带有$ rg <d <r(2g-1)$,我们展示了预期尺寸的组成部分。此外,我们还表明,没有任何组件具有更大的维度,并对那些比预期的较小的家庭进行了明确的描述。对于足够大的程度,我们表明该基因座不可还原。

We describe the locus of stable bundles on a smooth genus $g$ curve that fail to be globally generated. For each rank $r$ and degree $d$ with $rg<d<r(2g-1)$, we exhibit a component of the expected dimension. We show moreover that no component has larger dimension and give an explicit description of those families of smaller dimension than expected. For large enough degrees, we show that the locus is irreducible.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源