论文标题

具有已知未知数的生成颂歌建模

Generative ODE Modeling with Known Unknowns

论文作者

Linial, Ori, Ravid, Neta, Eytan, Danny, Shalit, Uri

论文摘要

在几种关键应用中,域知识是由普通微分方程(ODE)的系统编码的,通常是由潜在的物理和生物学过程所源。一个激励的例子是重症监护病房患者:重要生理功能的动力学,例如具有相关变量的心血管系统(心率,心率,心脏收缩性和输出以及血管抗性),可以通过已知的ODES近似描述。通常,某些ODE变量是直接观察到的(例如,心率和血压),而有些则未观察到(心脏收缩,输出和血管抗性),此外,观察到许多其他变量,但未通过驱动器建模,例如体温。重要的是,未观察到的ODE变量是知名的:我们知道它们存在及其功能动力学,但无法直接测量它们,也不知道将它们与所有观察到的测量结果联系在一起的功能。与医学,特别是心血管系统一样,估计这些知名度不佳的人非常有价值,它们是治疗操作的目标。在这种情况下,我们希望学习生成每个观察到的时间序列的ODE的参数,并推断ODE变量的未来和观测值。我们使用一个已知的ODE函数(称为Goku-net)使用已知未知数的生成ode建模的变量自动编码器来解决此任务。我们首先在长度或质量的单个和双摆的视频上验证方法;然后,我们将其应用于心血管系统的模型。我们表明,建模知名度未知的使我们能够成功地发现临床上有意义的未观察到的系统参数,导致更好的外推,并使用较小的训练集实现学习。

In several crucial applications, domain knowledge is encoded by a system of ordinary differential equations (ODE), often stemming from underlying physical and biological processes. A motivating example is intensive care unit patients: the dynamics of vital physiological functions, such as the cardiovascular system with its associated variables (heart rate, cardiac contractility and output and vascular resistance) can be approximately described by a known system of ODEs. Typically, some of the ODE variables are directly observed (heart rate and blood pressure for example) while some are unobserved (cardiac contractility, output and vascular resistance), and in addition many other variables are observed but not modeled by the ODE, for example body temperature. Importantly, the unobserved ODE variables are known-unknowns: We know they exist and their functional dynamics, but cannot measure them directly, nor do we know the function tying them to all observed measurements. As is often the case in medicine, and specifically the cardiovascular system, estimating these known-unknowns is highly valuable and they serve as targets for therapeutic manipulations. Under this scenario we wish to learn the parameters of the ODE generating each observed time-series, and extrapolate the future of the ODE variables and the observations. We address this task with a variational autoencoder incorporating the known ODE function, called GOKU-net for Generative ODE modeling with Known Unknowns. We first validate our method on videos of single and double pendulums with unknown length or mass; we then apply it to a model of the cardiovascular system. We show that modeling the known-unknowns allows us to successfully discover clinically meaningful unobserved system parameters, leads to much better extrapolation, and enables learning using much smaller training sets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源