论文标题

关于广播统治和多包的复杂性

On the complexity of Broadcast Domination and Multipacking in digraphs

论文作者

Foucaud, Florent, Gras, Benjamin, Perez, Anthony, Sikora, Florian

论文摘要

我们研究了两个双重覆盖和基于包装距离的问题的复杂性,广播的Digraphs中播放了统治和多包。 Digraph $ d $的主导广播是一个函数$ f:v(d)\ to \ mathbb {n} $,因此,对于每个顶点$ v $ $ d $的$ v $,存在$ f(t)> 0 $的$ f(t)> 0 $,最大$ f(t)$的$ v $有指向$ v $。 $ f $的成本是所有顶点$ v $的$ f(v)$的总和。多包是$ d $的一组$ s $的顶点,因此对于每个顶点$ v $ $ d $,对于每个整数$ d $,最多有$ d $ d $ dugtices从$ v $的最多$ d $ of $ v $。多包$ D $的最大尺寸是$ d $的主要广播的最低成本。让广播统治表示决定给定的Digraph $ d $最多$ k $的主导广播的问题,并多包决定$ d $是否具有至少$ k $的大小的多包。众所周知,广播统治是所有无方向图的类别的多项式时间求解(即对称的图形),而多项式算法的多项式算法仅在几类无向图中闻名。我们证明,即使对于较小的最大程度的平面层次的无环挖掘机,广播的统治和多包都既是挖掘机的NP填充。此外,当通过解决方案成本/解决方案大小进行参数时,我们表明问题是W-HARD。我们还表明,广播统治是在无环的挖掘上fpt的,除非多项式层次结构倒入其第三级,否则它不接受此类输入的多项式内核。此外,我们表明,当解决方案成本/解决方案大小与最大级别外部以及顶点覆盖号码一起使用时,这两个问题都是FPT。最后,我们给出了两种无环二驱动器子类的多项式时间算法。

We study the complexity of the two dual covering and packing distance-based problems Broadcast Domination and Multipacking in digraphs. A dominating broadcast of a digraph $D$ is a function $f:V(D)\to\mathbb{N}$ such that for each vertex $v$ of $D$, there exists a vertex $t$ with $f(t)>0$ having a directed path to $v$ of length at most $f(t)$. The cost of $f$ is the sum of $f(v)$ over all vertices $v$. A multipacking is a set $S$ of vertices of $D$ such that for each vertex $v$ of $D$ and for every integer $d$, there are at most $d$ vertices from $S$ within directed distance at most $d$ from $v$. The maximum size of a multipacking of $D$ is a lower bound to the minimum cost of a dominating broadcast of $D$. Let Broadcast Domination denote the problem of deciding whether a given digraph $D$ has a dominating broadcast of cost at most $k$, and Multipacking the problem of deciding whether $D$ has a multipacking of size at least $k$. It is known that Broadcast Domination is polynomial-time solvable for the class of all undirected graphs (that is, symmetric digraphs), while polynomial-time algorithms for Multipacking are known only for a few classes of undirected graphs. We prove that Broadcast Domination and Multipacking are both NP-complete for digraphs, even for planar layered acyclic digraphs of small maximum degree. Moreover, when parameterized by the solution cost/solution size, we show that the problems are W-hard. We also show that Broadcast Domination is FPT on acyclic digraphs, and that it does not admit a polynomial kernel for such inputs, unless the polynomial hierarchy collapses to its third level. In addition, we show that both problems are FPT when parameterized by the solution cost/solution size together with the maximum out-degree, and as well, by the vertex cover number. Finally, we give for both problems polynomial-time algorithms for some subclasses of acyclic digraphs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源