论文标题

Scrabblegan:半监督的不同长度手写文本生成

ScrabbleGAN: Semi-Supervised Varying Length Handwritten Text Generation

论文作者

Fogel, Sharon, Averbuch-Elor, Hadar, Cohen, Sarel, Mazor, Shai, Litman, Roee

论文摘要

在深度学习时代,光学特征识别(OCR)系统的性能已大大提高。对于手写文本识别(HTR)而言,这尤其如此,在该文本识别(HTR)中,每个作者都有独特的样式,与印刷文本不同,该文本的变化较小。也就是说,通过培训示例的数量,基于深度学习的HTR是有限的。收集数据是一项具有挑战性且昂贵的任务,更重要的是,我们关注的标签任务。减轻数据注释负担的一种可能方法是半监督的学习。与完全监督的方法相比,除标记的数据外,半监督方法使用了一些未标记的样本以提高性能。因此,这种方法可以在测试时间适应看不见的图像。 我们提出了Scrabblegan,这是一种半监督的方法,用于合成在风格和词典上具有多功能性的手写文本图像。 Scrabblegan依赖于一种新的生成模型,该模型可以生成任意长度的单词图像。我们展示了如何以半监督的方式运行我们的方法,并享受上述好处,例如在有效的HTR的状态下,绩效提升。此外,我们的发电机可以操纵由此产生的文本样式。例如,这使我们能够更改文本是草书,还是笔画有多薄。

Optical character recognition (OCR) systems performance have improved significantly in the deep learning era. This is especially true for handwritten text recognition (HTR), where each author has a unique style, unlike printed text, where the variation is smaller by design. That said, deep learning based HTR is limited, as in every other task, by the number of training examples. Gathering data is a challenging and costly task, and even more so, the labeling task that follows, of which we focus here. One possible approach to reduce the burden of data annotation is semi-supervised learning. Semi supervised methods use, in addition to labeled data, some unlabeled samples to improve performance, compared to fully supervised ones. Consequently, such methods may adapt to unseen images during test time. We present ScrabbleGAN, a semi-supervised approach to synthesize handwritten text images that are versatile both in style and lexicon. ScrabbleGAN relies on a novel generative model which can generate images of words with an arbitrary length. We show how to operate our approach in a semi-supervised manner, enjoying the aforementioned benefits such as performance boost over state of the art supervised HTR. Furthermore, our generator can manipulate the resulting text style. This allows us to change, for instance, whether the text is cursive, or how thin is the pen stroke.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源