论文标题
n = 2*的圆形威尔逊循环在两个循环和本地化时
Circular Wilson loop in N=2* super Yang-Mills theory at two loops and localization
论文作者
论文摘要
我们介绍了n = 2*超对称圆形的Wilson环的两循环计算在四球上。我们开发了一个有效的框架来计算贡献Feynman图,该框架依赖于使用嵌入坐标与梅林 - 巴恩斯技术相结合的嵌入式坐标,以在球体上使用类似传播器的积分。我们的结果与超对称定位的预测完全匹配,从而为后者在非统一设置中提供了非平凡的一致性检查。
We present a two-loop calculation of the supersymmetric circular Wilson loop in the N=2* super Yang-Mills theory on the four-sphere. We develop an efficient framework for computing contributing Feynman graphs that relies on using the embedding coordinates combined with the Mellin-Barnes techniques for propagator-like integrals on the sphere. Our results exactly match predictions of supersymmetric localization providing a nontrivial consistency check for the latter in non-conformal settings.