论文标题
渐近的地平线形成,时空拉伸和因果关系
Asymptotic horizon formation, spacetime stretching and causality
论文作者
论文摘要
在这项工作中,我们分析了渐近平坦的球形对称空间,其中事件地平线存在而没有任何被困的表面。我们确定了两种类型的这种空间,每种时间都与两个度量的自由度之一的渐近行为(时间)相关。我们研究了两种类型的因果结构,表明一个几乎总是具有cauchy的地平线,而另一个则是可扩展的,而另一个则是不可扩展的,但在地平线的两侧都有两个不同的未来无元无穷大区域。我们还研究了地平线周围的物质可以满足哪些能源条件。这些空间中的一些首先是在早期的工作中引入的,在该工作中,分析了黑洞范围附近的半经典作用。在这里,我们将此分析推广到更大的几何家族。
In this work we analyse asymptotically flat, spherically symmetric spacetimes in which an event horizon is present without any trapped surfaces. We identify two types of such spacetimes, each related to the asymptotic behaviour (in time) of one of the two degrees of freedom of the metric. We study the causal structure of both types, showing that one almost always has a Cauchy horizon beyond which it is extendable, while the other is inextendable but has two separate future null infinity regions on either side of the horizon. We also study what energy conditions can be satisfied by the matter around the horizon. Some of these spacetimes were first introduced in an earlier work in which semiclassical effects near black-hole horizons were analysed. Here we generalise this analysis to a larger family of geometries.