论文标题
不扰动的dyson-schwinger方程方法,用于强烈相互作用的dirac fermion系统
Nonperturbative Dyson-Schwinger equation approach to strongly interacting Dirac fermion systems
论文作者
论文摘要
研究相互作用的Dirac费物系统中强相关效应是现代冷凝物理物理学中最具挑战性的问题之一。远程库仑相互作用和费米亚 - phonon相互作用会导致各种有趣的特性。在强耦合体制中,弱耦合扰动理论分解了。 $ n $的$ 1/n $扩展的有效性也令人怀疑,因为$ n $等于$ 2 $或$ 4 $的现实系统。在这里,我们研究了(1+2) - 和(1+3) - 维无质量的dirac费米和通用标量玻色子之间的相互作用,并开发出有效的非扰动方法来访问强耦合方案。我们首先基于仔细的对称分析来得出许多自以为是的耦合的病房 - 塔卡哈西身份,然后使用这些身份来表明完整的Fermion-Boson顶点函数仅由完整的Fermion Expagator确定。利用此结果,我们严格地证明了完整的Fermion繁殖器可以满足确切且自锁定的Dyson-Schwinger积分方程,这可以通过使用数值方法来解决。我们非扰动方法的一个主要优点是,无需采用任何较小的扩展参数。我们的方法提供了一个统一的理论框架,用于研究强大的库仑和费米恩 - 波相互作用。它也可用于大约处理费米子之间的Yukawa耦合,并在连续量子临界点周围进行订单参数波动。我们的方法用于治疗未掺杂的石墨烯中的库仑相互作用。我们发现,重新归一化的费米速度表现出对数动量依赖性,但几乎独立于能量,并且库仑相互作用不会产生激发隙。这些理论结果与石墨烯中的实验一致。
Studying the strong correlation effects in interacting Dirac fermion systems is one of the most challenging problems in modern condensed matter physics. The long-range Coulomb interaction and the fermion-phonon interaction can lead to a variety of intriguing properties. In the strong-coupling regime, weak-coupling perturbation theory breaks down. The validity of $1/N$ expansion with $N$ being the fermion flavor is also in doubt since $N$ equals to $2$ or $4$ in realistic systems. Here, we investigate the interaction between (1+2)- and (1+3)-dimensional massless Dirac fermions and a generic scalar boson, and develop an efficient non-perturbative approach to access the strong-coupling regime. We first derive a number of self-consistently coupled Ward-Takahashi identities based on a careful symmetry analysis and then use these identities to show that the full fermion-boson vertex function is solely determined by the full fermion propagator. Making use of this result, we rigorously prove that the full fermion propagator satisfies an exact and self-closed Dyson-Schwinger integral equation, which can be solved by employing numerical methods. A major advantage of our non-perturbative approach is that there is no need to employ any small expansion parameter. Our approach provides a unified theoretical framework for studying strong Coulomb and fermion-phonon interactions. It may also be used to approximately handle the Yukawa coupling between fermions and order-parameter fluctuations around continuous quantum critical points. Our approach is applied to treat the Coulomb interaction in undoped graphene. We find that the renormalized fermion velocity exhibits a logarithmic momentum-dependence but is nearly energy independent, and that no excitonic gap is generated by the Coulomb interaction. These theoretical results are consistent with experiments in graphene.