论文标题
球道:构建公平ML软件的一种方法
Fairway: A Way to Build Fair ML Software
论文作者
论文摘要
机器学习软件越来越多地用于做出影响人们生活的决策。但是有时候,该软件的核心部分(学习的模型)以有偏见的方式行为,这给特定的人(这些群体由性别,种族等决定)带来了不当的优势。 AI软件系统中的这种“算法歧视”已成为机器学习和软件工程社区中严重关注的问题。已经进行了一些工作来找到软件系统中的“算法偏见”或“道德偏见”。一旦在AI软件系统中检测到偏差,偏置的缓解就极为重要。在这项工作中,我们a)解释了训练数据中的基础真相偏差如何影响机器学习模型的公平性以及如何在AI软件中找到偏见,b)提出了一种结合预处理和过程中的方法以消除训练数据和训练模型的道德偏见。我们的结果表明,我们可以在学习模型中找到偏见和减轻偏见,而不会损害该模型的预测性能。我们建议(1)偏差的测试和(2)缓解偏差应该是机器学习软件开发生命周期的常规部分。 Fairway为这两个目的提供了很多支持。
Machine learning software is increasingly being used to make decisions that affect people's lives. But sometimes, the core part of this software (the learned model), behaves in a biased manner that gives undue advantages to a specific group of people (where those groups are determined by sex, race, etc.). This "algorithmic discrimination" in the AI software systems has become a matter of serious concern in the machine learning and software engineering community. There have been works done to find "algorithmic bias" or "ethical bias" in the software system. Once the bias is detected in the AI software system, the mitigation of bias is extremely important. In this work, we a)explain how ground-truth bias in training data affects machine learning model fairness and how to find that bias in AI software,b)propose a methodFairwaywhich combines pre-processing and in-processing approach to remove ethical bias from training data and trained model. Our results show that we can find bias and mitigate bias in a learned model, without much damaging the predictive performance of that model. We propose that (1) test-ing for bias and (2) bias mitigation should be a routine part of the machine learning software development life cycle. Fairway offers much support for these two purposes.