论文标题

基于随机事件的传感器时间表,用于认知无线电传感器网络中的远程状态估计

Stochastic Event-based Sensor Schedules for Remote State Estimation in Cognitive Radio Sensor Networks

论文作者

Huang, Lingying, Wang, Jiazheng, Kung, Enoch, Mo, Yilin, Wu, Junfeng, Shi, Ling

论文摘要

我们考虑了在认知无线电传感器网络(CRSN)中远程状态估计的通信分配问题。传感器收集物理工厂的测量值,并将数据传输到共享网络中的二级用户(SU)。原始用户(PUS)的存在将外源性不确定性带入了传输计划过程中,以及如何设计基于事件的调度方案考虑了这些不确定性,但文献中尚未解决。在这项工作中,我们从CRSN中离散时间远程估计过程的制定开始,然后在没有数据传输的情况下分析包含的隐藏信息。为了在估计绩效和通信消耗之间取得更好的权衡,我们使用贝叶斯环境下的隐藏信息提出了开环和闭环计划。开环计划不依赖任何反馈信号,而仅适用于稳定的植物。对于不稳定的植物,闭环时间表是根据反馈信号设计的。两个时间表中的参数设计问题均通过凸面编程有效解决。包括数值模拟以说明理论结果。

We consider the problem of communication allocation for remote state estimation in a cognitive radio sensor network~(CRSN). A sensor collects measurements of a physical plant, and transmits the data to a remote estimator as a secondary user (SU) in the shared network. The existence of the primal users (PUs) brings exogenous uncertainties into the transmission scheduling process, and how to design an event-based scheduling scheme considering these uncertainties has not been addressed in the literature. In this work, we start from the formulation of a discrete-time remote estimation process in the CRSN, and then analyze the hidden information contained in the absence of data transmission. In order to achieve a better tradeoff between estimation performance and communication consumption, we propose both open-loop and closed-loop schedules using the hidden information under a Bayesian setting. The open-loop schedule does not rely on any feedback signal but only works for stable plants. For unstable plants, a closed-loop schedule is designed based on feedback signals. The parameter design problems in both schedules are efficiently solved by convex programming. Numerical simulations are included to illustrate the theoretical results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源