论文标题
基于随机事件的传感器时间表,用于认知无线电传感器网络中的远程状态估计
Stochastic Event-based Sensor Schedules for Remote State Estimation in Cognitive Radio Sensor Networks
论文作者
论文摘要
我们考虑了在认知无线电传感器网络(CRSN)中远程状态估计的通信分配问题。传感器收集物理工厂的测量值,并将数据传输到共享网络中的二级用户(SU)。原始用户(PUS)的存在将外源性不确定性带入了传输计划过程中,以及如何设计基于事件的调度方案考虑了这些不确定性,但文献中尚未解决。在这项工作中,我们从CRSN中离散时间远程估计过程的制定开始,然后在没有数据传输的情况下分析包含的隐藏信息。为了在估计绩效和通信消耗之间取得更好的权衡,我们使用贝叶斯环境下的隐藏信息提出了开环和闭环计划。开环计划不依赖任何反馈信号,而仅适用于稳定的植物。对于不稳定的植物,闭环时间表是根据反馈信号设计的。两个时间表中的参数设计问题均通过凸面编程有效解决。包括数值模拟以说明理论结果。
We consider the problem of communication allocation for remote state estimation in a cognitive radio sensor network~(CRSN). A sensor collects measurements of a physical plant, and transmits the data to a remote estimator as a secondary user (SU) in the shared network. The existence of the primal users (PUs) brings exogenous uncertainties into the transmission scheduling process, and how to design an event-based scheduling scheme considering these uncertainties has not been addressed in the literature. In this work, we start from the formulation of a discrete-time remote estimation process in the CRSN, and then analyze the hidden information contained in the absence of data transmission. In order to achieve a better tradeoff between estimation performance and communication consumption, we propose both open-loop and closed-loop schedules using the hidden information under a Bayesian setting. The open-loop schedule does not rely on any feedback signal but only works for stable plants. For unstable plants, a closed-loop schedule is designed based on feedback signals. The parameter design problems in both schedules are efficiently solved by convex programming. Numerical simulations are included to illustrate the theoretical results.