论文标题
一个近乎中性的双重摩兰模型,具有偏置突变,线性和二次选择
A nearly-neutral biallelic Moran model with biased mutation and linear and quadratic selection
论文作者
论文摘要
在本文中,分析了具有线性和二次选择的双重可逆突变模型。该方法重新连接了Kimura提出的一种方法(在稳定选择下进行广泛的中性进化的可能性特别参考了密码子的非随机使用(PNAS,1981)),后者是从扩散模型开始的,并得出其平衡分布,最高为常数。我们使用边界突变的Moran模型,该模型近似于小有效突变率的一般突变模型,并在小型到中等大小的种群中得出其对多态性和单态变体的平衡分布。使用此模型,我们表明,仅偏见的突变率和线性选择就会导致通常归因于平衡或过度选择的人群之间的多态性率模式和替代率。我们使用来自果蝇Simulans和果蝇Melanogaster的简短内含子和四倍变性位点的数据集和四倍的退化位点进行了说明。
In this article, a biallelic reversible mutation model with linear and quadratic selection is analyzed. The approach reconnects to one proposed by Kimura ( Possibility of extensive neutral evolution under stabilizing selection with special reference to nonrandom use of codons (PNAS,1981)), who starts from a diffusion model and derives its equilibrium distribution up to a constant. We use a boundary-mutation Moran model, which approximates a general mutation model for small effective mutation rates, and derive its equilibrium distribution for polymorphic and monomorphic variants in small to moderately sized populations. Using this model, we show that biased mutation rates and linear selection alone can cause patterns of polymorphism rates within and substitution rates between populations that are usually ascribed to balancing or overdominant selection. We illustrate this using a data set of short introns and fourfold degenerate sites from Drosophila simulans and Drosophila melanogaster.