论文标题
确定性近似EM算法;应用于Riemann近似EM和钢化EM
Deterministic Approximate EM Algorithm; Application to the Riemann Approximation EM and the Tempered EM
论文作者
论文摘要
期望最大化(EM)算法被广泛用于优化具有潜在变量的非convex似然函数。许多作者修改了其简单的设计以适合更具体的情况。例如,期望(E)步骤已被蒙特卡洛(MC),马尔可夫链蒙特卡洛(Monte Carlo)或纠正近似等取代。大多数研究良好的近似值都属于随机类。相比之下,在确定性近似方面缺乏文献。在本文中,我们引入了一个理论框架,并提供了最新的融合保证,以确定e步骤的确定性近似。我们从理论和经验上分析了适合该框架的几个近似值。首先,对于棘手的电子步骤,我们使用Riemann Sums介绍了MC-EM的确定性版本。一种直接的方法,不需要任何高参数微调,当低维度不保证MC-EM时有用。然后,我们考虑从模拟退火文献中借来的调整近似值,并用于逃脱局部极值。我们证明,钢化EM比以前考虑的比较范围更广泛的温度曲线验证收敛保证。我们从经验上展示了新的非平凡概况如何更成功地逃脱对抗性初始化。最后,我们将Riemann结合起来,并将近似值恢复到完成两个目的的方法中。
The Expectation Maximisation (EM) algorithm is widely used to optimise non-convex likelihood functions with latent variables. Many authors modified its simple design to fit more specific situations. For instance, the Expectation (E) step has been replaced by Monte Carlo (MC), Markov Chain Monte Carlo or tempered approximations, etc. Most of the well-studied approximations belong to the stochastic class. By comparison, the literature is lacking when it comes to deterministic approximations. In this paper, we introduce a theoretical framework, with state-of-the-art convergence guarantees, for any deterministic approximation of the E step. We analyse theoretically and empirically several approximations that fit into this framework. First, for intractable E-steps, we introduce a deterministic version of MC-EM using Riemann sums. A straightforward method, not requiring any hyper-parameter fine-tuning, useful when the low dimensionality does not warrant a MC-EM. Then, we consider the tempered approximation, borrowed from the Simulated Annealing literature and used to escape local extrema. We prove that the tempered EM verifies the convergence guarantees for a wider range of temperature profiles than previously considered. We showcase empirically how new non-trivial profiles can more successfully escape adversarial initialisations. Finally, we combine the Riemann and tempered approximations into a method that accomplishes both their purposes.