论文标题

较大的质量质量基因的更快计算

Faster computation of isogenies of large prime degree

论文作者

Bernstein, Daniel, de Feo, Luca, Leroux, Antonin, Smith, Benjamin

论文摘要

令$ \ mathcal {e}/\ mathbb {f} _q $为椭圆曲线,而$ \ mathcal {e}中的$ p $ a点(\ Mathbb {f} _Q)prime prime $ \ ell $ \ ell $。 Vélu的公式让我们计算一条商曲线$ \ MATHCAL {E}'= \ MATHCAL {e}/\ langle {p} \ rangle $和有理图,定义了标准的nisogeny $ $ ϕ:\ MATHCAL {E} $ \ mathbb {f} _q $ - operations,其中$ \ tilde {o} $在$ q $中是均匀的。本文显示了如何计算$ \ nathcal {e} $,而$ d(q)$ for $ q $ for $ q $ in $ \ nathcal in $ \ nathcal {e}(\ nathbbbbbbbbbbbbbbbbbbbbbb c) $ \ tilde {o}(\ sqrt {\ ell})$ $ \ mathbb {f} _q $ - operations,其中$ \ tilde {o} $在$ q $中再次均匀。

Let $\mathcal{E}/\mathbb{F}_q$ be an elliptic curve, and $P$ a point in $\mathcal{E}(\mathbb{F}_q)$ of prime order $\ell$. Vélu's formulae let us compute a quotient curve $\mathcal{E}' = \mathcal{E}/\langle{P}\rangle$ and rational maps defining a quotient isogeny $ϕ: \mathcal{E} \to \mathcal{E}'$ in $\tilde{O}(\ell)$ $\mathbb{F}_q$-operations, where the $\tilde{O}$ is uniform in $q$.This article shows how to compute $\mathcal{E}'$, and $ϕ(Q)$ for $Q$ in $\mathcal{E}(\mathbb{F}_q)$, using only $\tilde{O}(\sqrt{\ell})$ $\mathbb{F}_q$-operations, where the $\tilde{O}$ is again uniform in $q$.As an application, this article speeds up some computations used in the isogeny-based cryptosystems CSIDH and CSURF.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源