论文标题

曲线缩短了公制植入平面的流动

The curve shortening flow in the metric-affine plane

论文作者

Rovenski, Vladimir

论文摘要

我们首次研究了公制植入平面中的曲线缩短流,并证明在简单的几何条件下,它在有限的时间内将封闭的凸曲线缩小到“圆点”。这概括了M. Gage和R.S.的经典结果汉密尔顿关于欧几里得平面中的凸曲线。

We investigate for the first time the curve shortening flow in the metric-affine plane and prove that under simple geometric condition it shrinks a closed convex curve to a "round point" in finite time. This generalizes the classical result by M. Gage and R.S. Hamilton about convex curves in Euclidean plane.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源