论文标题
曲线缩短了公制植入平面的流动
The curve shortening flow in the metric-affine plane
论文作者
论文摘要
我们首次研究了公制植入平面中的曲线缩短流,并证明在简单的几何条件下,它在有限的时间内将封闭的凸曲线缩小到“圆点”。这概括了M. Gage和R.S.的经典结果汉密尔顿关于欧几里得平面中的凸曲线。
We investigate for the first time the curve shortening flow in the metric-affine plane and prove that under simple geometric condition it shrinks a closed convex curve to a "round point" in finite time. This generalizes the classical result by M. Gage and R.S. Hamilton about convex curves in Euclidean plane.