论文标题
龙骑兵:私人分散的命中使实用
Dragoon: Private Decentralized HITs Made Practical
论文作者
论文摘要
随着区块链的迅速流行,提出了分散的人类智能任务(HITS),以众包人类知识而不依赖脆弱的第三方平台。但是,区块链的固有极限导致分散的命中面临一些“新”挑战。例如,征求数据的机密性被证明是正弦物质,尽管它可以说是集中式设置中的可分配属性。为了确保对数据隐私的“新”要求,现有的分散率使用通用的零知识证明框架(例如Snark),但由于固有昂贵的一般成本,在实践中几乎表现不佳。 我们提出了一项实用的分散式分散协议,这也实现了请求者与工人之间的公平性。从贡献的核心中,我们避免使用强大而又高度的通用ZK-PROFFARVE工具,并提出了一种特殊的方案,以证明加密数据的质量。通过各种非平凡的陈述改革,证明加密数据的质量被降低为有效的可验证解密,从而使分散的命中率实用。一路上,我们严格地定义了分散命中的理想功能,然后证明由于理想的范式而证明了安全性。 我们进一步实例化了我们的协议,以实现一个名为Dagoon的系统,该系统在以太坊顶部部署了一个实例,以促进ImageNet使用的图像注释任务。我们的评估证明了它的实用性:龙龙的链链处理成本甚至远小于亚马逊机械土耳其人的处理费,同一影像网击中。
With the rapid popularity of blockchain, decentralized human intelligence tasks (HITs) are proposed to crowdsource human knowledge without relying on vulnerable third-party platforms. However, the inherent limits of blockchain cause decentralized HITs to face a few "new" challenges. For example, the confidentiality of solicited data turns out to be the sine qua non, though it was an arguably dispensable property in the centralized setting. To ensure the "new" requirement of data privacy, existing decentralized HITs use generic zero-knowledge proof frameworks (e.g. SNARK), but scarcely perform well in practice, due to the inherently expensive cost of generality. We present a practical decentralized protocol for HITs, which also achieves the fairness between requesters and workers. At the core of our contributions, we avoid the powerful yet highly-costly generic zk-proof tools and propose a special-purpose scheme to prove the quality of encrypted data. By various non-trivial statement reformations, proving the quality of encrypted data is reduced to efficient verifiable decryption, thus making decentralized HITs practical. Along the way, we rigorously define the ideal functionality of decentralized HITs and then prove the security due to the ideal-real paradigm. We further instantiate our protocol to implement a system called Dragoon, an instance of which is deployed atop Ethereum to facilitate an image annotation task used by ImageNet. Our evaluations demonstrate its practicality: the on-chain handling cost of Dragoon is even less than the handling fee of Amazon's Mechanical Turk for the same ImageNet HIT.