论文标题

小说4d爱因斯坦 - 加斯 - 鲍尼特重力中的辐射黑洞

Radiating black holes in the novel 4D Einstein-Gauss-Bonnet gravity

论文作者

Ghosh, Sushant G., Maharaj, Sunil D.

论文摘要

最近Glavan和Lin [Phys。莱特牧师。 124,081301(2020)]制作了一种新型的爱因斯坦 - 加斯 - 鲍尼特重力,其中高斯 - 邦纳特耦合已重新缩放为$α/(d-4)$,$ 4D $理论定义为限制$ d \ d \ rightarrow 4 $,它保留了自由度的自由度,从该数字中列出了自由度,该级别是免费的。我们在新型的4D Einstein-Gauss-Bonnet重力中介绍了确切的球形对称非静态零灰尘溶液,该重力绕过了lovelock定理。我们的解决方案代表了辐射黑洞和恢复,以$α\ rightarrow 0 $,著名的vaidya黑洞(GR)。我们讨论了黑洞溶液的地平线结构,以发现表征其结构的三个地平线样基因座,即。 $ ah $,$ eh $和$ tls $有关系$ r_ {eh} <r_ {ah} = r_ {tls} $。还考虑了该理论中带电的辐射黑洞,概括了邦诺 - 瓦迪亚黑洞。特别是我们的结果,在限制$α\ rightarrow 0 $中,完全减少到\ emph {vis-$ \ grave {a} $ - vis} gr的4d黑洞。

Recently Glavan and Lin [Phys. Rev. Lett. 124, 081301 (2020)] formulated a novel Einstein-Gauss-Bonnet gravity in which the Gauss-Bonnet coupling has been rescaled as $α/(D-4)$ and the $4D$ theory is defined as the limit $D \rightarrow 4$, which preserves the number degrees of freedom thereby free from the Ostrogradsky instability. We present exact spherically symmetric nonstatic null dust solutions in the novel 4D Einstein-Gauss-Bonnet gravity that bypasses the Lovelock theorem. Our solution represents radiating black holes and regains, in the limit $α\rightarrow 0$, the famous Vaidya black hole of general relativity (GR). We discuss the horizon structure of black hole solutions to find that the three horizon-like loci that characterizes its structure, viz. $AH$, $EH$ and $ TLS $ have the relationship $r_{EH} < r_{AH} = r_{TLS}$. The charged radiating black holes in the theory, generalizing Bonnor-Vaidya black holes, are also considered. In particular our results, in the limit $α\rightarrow 0$, reduced exactly to \emph{vis-$\grave{a}$-vis} 4D black holes of GR.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源