论文标题

$χ$ - 体积函数的连续性超过Adelic曲线

The continuity of $χ$-volume functions over adelic curves

论文作者

Luo, Wenbin

论文摘要

在Adelic曲线上的Arakelov几何形状的环境中,我们介绍了$χ$ - 体积功能并显示一些一般属性。本文致力于讨论$χ$ - 体积功能的连续性。通过讨论其与音量功能的关系,我们证明了其围绕Adelic $ \ Mathbb {q} $ - afor $ \ mathbb {q} $的连续性 - 卡地亚分数及其连续性及其在微不足道的情况下的连续性。对算术Okounkov身体变化的研究使我们在算术表面上连续扩展。

In the setting of Arakelov geometry over adelic curves, we introduce the $χ$-volume function and show some general properties. This article is dedicated to talk about the continuity of $χ$-volume function. By discussing its relationship with volume function, we prove its continuity around adelic $\mathbb{Q}$-ample $\mathbb{Q}$-Cartier divisors and its continuity in the trivially valued case. The study of the variation of arithmetic Okounkov bodies leads us to its continuous extension on arithmetic surfaces.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源