论文标题

纳米结构的尼奥贝特锂中的光学阿波尔模式,用于增强第二次谐波生成

Optical anapole mode in nanostructured lithium niobate for enhancing second harmonic generation

论文作者

Li, Yang, Huang, Zhijin, Sui, Zhan, Chen, Huajiang, Zhang, Xinyue, Guan, Heyuan, Qiu, Wentao, Dong, Jiangli, Zhu, Wenguo, Yu, Jianhui, Lu, Huihui, Chen, Zhe

论文摘要

具有较大透明度的材料的第二次谐波生成(SHG)是一种在异国波长范围(例如VUV,UV和可见光)上产生连贯的光源的吸引人方法。这对于提高非线性转换效率至关重要,以便在量子光源和高分辨率非线性显微镜等中找到实际应用。在这里,通过通过在11 gw/cm2泵的282 nm的SH波长下,通过在11 g/cm2泵的SH波长下,通过在lith niobite中激发line niobite(lin niobite)(lin niobite inist lin niobite),在282 nm的SH波长下达到0.01%,或者是0.01%的订单。研究非线性系数。 Anapole具有强烈抑制远场散射和限制内部场的优势,这有助于提高非线性转化率。 LN纳米虫中的Anapoles通过双曲线超材料结构设计的LN和底物之间的高指数对比度具有接近零索引的性质。通过调整双曲线超材料的多层结构,可以在不同的波长下调整Anapole激发波长。这表明可以通过Epsilon-near-Zero(ENZ)双曲线超材料底物在各种泵轻波长下实现增强的SHG。这项工作中提出的纳米结构可能对纳米级的增强的光结合相互作用(例如集成光学器件)具有重要意义。

Second harmonic generation (SHG) with a material of large transparency is an attractive way of generating coherent light sources at exotic wavelength range such as VUV, UV and visible light. It is of critical importance to improve nonlinear conversion efficiency in order to find practical applications in quantum light source and high resolution nonlinear microscopy, etc. Here an enhanced SHG with conversion efficiency up to the order of 0.01% at SH wavelength of 282 nm under 11 GW/cm2 pump power via the excitation of anapole in lithium niobite (LiNbO3, or LN) nanodisk through the dominating d33 nonlinear coefficient is investigated. The anapole has advantages of strongly suppressing far-field scattering and well-confined internal field which helps to boost the nonlinear conversion. Anapoles in LN nanodisk is facilitated by high index contrast between LN and substrate with properties of near-zero-index via hyperbolic metamaterial structure design. By tailoring the multi-layers structure of hyperbolic metamaterials, the anapole excitation wavelength can be tuned at different wavelengths. It indicates that an enhanced SHG can be achieved at a wide range of pump light wavelengths via different design of the epsilon-near-zero (ENZ) hyperbolic metamaterials substrates. The proposed nanostructure in this work might hold significances for the enhanced light-matter interactions at the nanoscale such as integrated optics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源