论文标题
激光杯床的固化特性融合了Alsi10mg:构建方向的作用
Solidification Characteristics of Laser-Powder Bed Fused AlSi10Mg: Role of Building Direction
论文作者
论文摘要
在这项工作中,研究了构建方向对激光粉融合(LPBF)处理的ALSI10MG合金的微观结构演化的影响。如实验制造的部分所示,建筑方向可以影响凝固行为并促进细胞树突形成微观结构的形态过渡。我们开发了一个热模型,以系统地解决激光处理条件的影响,并在ALSI10MG合金的激光加工过程中建立对熔融池的热特性的方向。然后,我们使用多阶参数相位场模型来研究稀限LPBF-Alsi10mg的微观结构演化,使用水平和垂直建筑物方向的基础热条件作为输入。此处采用的相位场模型旨在使用接种剂颗粒的异质成核模拟凝固,从而考虑了包括柱状到等式过渡(CET)在内的形态学现象。首先根据先前开发的hunt \ cite {Hunt1984steady}的稳态CET理论的预测来验证相位场模型。然后在瞬态条件下使用它来研究微观结构的演变,表明由于较大的构成底冷的过冷,在水平建造的样品中的成核速率明显更高,这与实验性观察一致。我们进一步量化了构建方向对局部冷却条件的影响,从而对谷物形态进行了量化。
In this work, the effect of building direction on the microstructure evolution of laser-powder bed fusion (LPBF) processed AlSi10Mg alloy was investigated. The building direction, as shown in experimentally fabricated parts, can influence the solidification behavior and promote morphological transitions in cellular dendritic microstructures. We develop a thermal model to systemically address the impact of laser processing conditions, and building direction on the thermal characteristics of the molten pool during laser processing of AlSi10Mg alloy. We then employ a multi-order parameter phase field model to study the microstructure evolution of LPBF-AlSi10Mg in the dilute limit, using the underlying thermal conditions for horizontal and vertical building directions as input. The phase field model employed here is designed to simulate solidification using heterogeneous nucleation from inoculant particles allowing to take into account morphological phenomena including the columnar-to-equiaxed transition (CET). The phase field model is first validated against the predictions of the previously developed steady-state CET theory of Hunt \cite{hunt1984steady}. It is then used under transient conditions to study microstructure evolution, revealing that the nucleation rate is noticeably higher in the horizontally built samples due to larger constitutional undercooling, which is consistent with experimental observations. We further quantify the effect of building direction on the local cooling conditions, and consequently on the grain morphology.