论文标题
本质上四连接的图中的大周期
Large cycles in essentially 4-connected graphs
论文作者
论文摘要
Tutte证明,每个4个连接的平面图都包含汉密尔顿周期,但是有3个连接的$ N $ -VERTEX平面图,其最长的周期具有长度$θ(n^{\ log_32})$。另一方面,杰克逊(Jackson)和韦尔马德(Wormald)在1992年证明,本质上是4 $ n $ n $ vertex平面图包含一个长度至少$(2n+4)/5 $的周期,最近将其提高到$ 5(n+2)/8 $,由Fabrici {\ it eT al}提高到$ 5(N+2)/8 $。在本文中,我们将其改进为$ \ lceil(2n+6)/3 \ rceil $ for $ n \ ge 6 $,这是最好的,可以通过证明Tutte路径上Thomassen结果的定量版本。
Tutte proved that every 4-connected planar graph contains a Hamilton cycle, but there are 3-connected $n$-vertex planar graphs whose longest cycles have length $Θ(n^{\log_32})$. On the other hand, Jackson and Wormald in 1992 proved that an essentially 4-connected $n$-vertex planar graph contains a cycle of length at least $(2n+4)/5$, which was recently improved to $5(n+2)/8$ by Fabrici {\it et al}. In this paper, we improve this bound to $\lceil (2n+6)/3\rceil$ for $n\ge 6$, which is best possible, by proving a quantitative version of a result of Thomassen on Tutte paths.