论文标题

使用耦合集群下折叠技术的子系统量子动力学

Sub-system quantum dynamics using coupled cluster downfolding techniques

论文作者

Kowalski, Karol, Bauman, Nicholas P.

论文摘要

在本文中,我们将讨论将子系统嵌入子代数耦合群集(SESCC)形式主义和双统一耦合群集(DUCC)ANSATZ扩展到时域。该分析的一个重要部分与基于定义外部和内部激发的抗赫米特群集算子的一般多体形式证明DUCC ANSATZ的精确性有关。使用这些形式主义,可以将整个系统的能量计算为活跃空间中折叠/有效的哈密顿量的特征值,这是通过复合系统的子系统识别的。还可以表明,被折叠的汉密尔顿人整合了典型的自由度,这与活动空间封装的物理学不符。在本文中,我们将这些结果扩展到了时间依赖性的Schroedinger方程,这表明可以将系统划分为在时间上缓慢变化的子系统和与快速振荡相对应的其余子系系统变化的子系统。这种时间依赖性的形式主义允许耦合的群集量子动力学扩展到较大的系统,并基于量子兰开斯方法的新量子算法的制定,该方法最近在文献中被考虑。

In this paper, we discuss extending the sub-system embedding sub-algebra coupled cluster (SESCC) formalism and the double unitary coupled cluster (DUCC) Ansatz to the time domain. An important part of the analysis is associated with proving the exactness of the DUCC Ansatz based on the general many-body form of anti-Hermitian cluster operators defining external and internal excitations. Using these formalisms, it is possible to calculate the energy of the entire system as an eigenvalue of downfolded/effective Hamiltonian in the active space, that is identifiable with the sub-system of the composite system. It can also be shown that downfolded Hamiltonians integrate out Fermionic degrees of freedom that do not correspond to the physics encapsulated by the active space. In this paper, we extend these results to the time-dependent Schroedinger equation, showing that a similar construct is possible to partition a system into a sub-system that varies slowly in time and a remaining sub-system that corresponds to fast oscillations. This time-dependent formalism allows coupled cluster quantum dynamics to be extended to larger systems and for the formulation of novel quantum algorithms based on the quantum Lanczos approach, which has recently been considered in the literature.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源