论文标题
通过N体模拟解决卫星潮汐碎片在银河系环境中的分布
Addressing via N-body simulations the distribution of the satellite tidal debris in the Milky Way environment
论文作者
论文摘要
我们研究银河系卫星恒星和暗物质碎片的分布。我们第一次通过同时利用a)从宇宙学模拟中提取的一组逼真的轨道来解决模拟中卫星的潮汐破坏问题,b)具有活晕,盘和凸起组件的三个组件宿主星系,以及来自水力动态模拟的卫星。我们分析了所有大型星系的卫星碎片的统计特性,这些星系在2 GYR的时间范围内达到内部银河系。从卫星中剥离了多达80美元的暗物质,而最多30美元的恒星。恒星碎片主要以内银色的光环终止,而暗物质碎片在整个主光环上显示出平坦的质量分布。暗物质碎片遵循内部功率定律指数$α_ {\ rm dm} = - 0.66 $和外部索引$β_ {\ rm dm} = 2.94 $,而星星$α_ {*} = -0.44 $和$β_ {*6.17 $。在内部的25 kpc中,恒星碎片的分布比暗物质碎片的分布更平坦,其短轴的方向差异很大。将恒星光盘的方向更改为90 $^{\ rm {o}} $,对卫星碎片的分布只有很小的影响。我们的结果表明,与银河系卫星的恒星相比,暗物质更容易剥离。碎屑的结构以卫星轨道特性为主。径向曲线,恒星和暗物质碎片的扁平化和方向显着差异,这阻止了观察到的恒星成分对暗物质分布的预测。
We study the distribution of the Milky Way satellites stellar and dark matter debris. For the first time we address the question of the tidal disruption of satellites in simulations by utilising simultaneously a) a realistic set of orbits extracted from cosmological simulations, b) a three component host galaxy with live halo, disc and bulge components, and c) satellites from hydrodynamical simulations. We analyse the statistical properties of the satellite debris of all massive galaxies reaching the inner Milky Way on a timescale of 2 Gyr. Up to 80$\%$ of the dark matter is stripped from the satellites, while this happens for up to 30$\%$ of their stars. The stellar debris ends mostly in the inner Milky Way halo, whereas the dark matter debris shows a flat mass distribution over the full main halo. The dark matter debris follows a density profile with inner power law index $α_{\rm DM}=-0.66$ and outer index $β_{\rm DM}=2.94$, while for stars $α_{*}=-0.44$ and $β_{*}=6.17$. In the inner 25 kpc, the distribution of the stellar debris is flatter than that of the dark matter debris and the orientations of their short axes differ significantly. Changing the orientation of the stellar disc by 90$^{\rm{o}}$ has only a minor impact on the distribution of the satellite debris. Our results indicate that the dark matter is more easily stripped than stars from the Milky Way satellites. The structure of the debris is dominated by the satellite orbital properties. The radial profiles, the flattening and the orientation of the stellar and dark matter debris are significantly different, which prevents the prediction of the dark matter distribution from the observed stellar component.