论文标题

3D异质各向异性媒体中的本征:第二部分 - 运动学,Lagrangian的验证

Eigenrays in 3D heterogeneous anisotropic media: Part II -- Kinematics, Validation of the Lagrangian

论文作者

Koren, Zvi, Ravve, Igor

论文摘要

这项研究的第I部分提出的拉格朗日形式先前已用于在各向同性介质中的两个端点之间获得固定的射线路径。我们通过用射线(组)速度幅度替换各向同性培养基速度,将其扩展到一般各向异性,该速度取决于两者,这两者都取决于两者,射线位置和射线方向的弹性性能。对一般各向异性的这种概括并非微不足道,在这一部分中,我们进一步详细阐述了这种原始的与弧度相关的拉格朗日的正确性,物理解释和优势。我们还研究了替代已知的Lagrangian形式及其与拟议的形式的关系。然后,我们表明我们提出的一级同质拉格朗日(相对于射线方向向量)导致与代表一级和二级均质函数的替代拉格朗日人相同的运动学射线方程。使用不同的各向异性示例,我们进一步验证/证明了所提出的Lagrangian的正确性,分析性地(对于椭圆形原骨培养基的规范案例)和数值(包括最通用的培养基:空间上变化的TrinClinic Contanua)。最后,我们分析了公认的陈述,即仅当拉格朗日是二级与矢量切线相关的时间相关的同质函数时,哈密顿和拉格朗日才能通过可分解的legendre变换相关。我们表明,这种情况可以绕过,并且在添加基本的物理约束时,也可以使用具有单一的Hessian矩阵的一级同质Lagrangian,它也可以使用它,这变成了Legendre本身。特别是,可以在较短的向量上求解动量方程,例如建立射线方向。

The form of the Lagrangian proposed in Part I of this study has been previously used for obtaining stationary ray paths between two endpoints in isotropic media. We extended it to general anisotropy by replacing the isotropic medium velocity with the ray (group) velocity magnitude which depends on both, the elastic properties at the ray location and the ray direction. This generalization for general anisotropy is not trivial and in this part we further elaborate on the correctness, physical interpretation, and advantages of this original arclength-related Lagrangian. We also study alternative known Lagrangian forms and their relation to the proposed one. We then show that our proposed first-degree homogeneous Lagrangian (with respect to the ray direction vector) leads to the same kinematic ray equations as the alternative Lagrangians representing first- and second-degree homogeneous functions. Using different anisotropic examples, we further validate/demonstrate the correctness of the proposed Lagrangian, analytically (for a canonical case of an ellipsoidal orthorhombic medium) and numerically (including the most general medium scenario: spatially varying triclinic continua). Finally, we analyze the commonly accepted statement that the Hamiltonian and the Lagrangian can be related via a resolvable Legendre transform only if the Lagrangian is a time-related homogeneous function of the second-degree with respect to the vector tangent to the ray. We show that this condition can be bypassed, and a first-degree homogeneous Lagrangian, with a singular Hessian matrix, can be used as well, when adding a fundamental physical constraint which turns to be the Legendre transform itself. In particular, the momentum equation can be solved, establishing, for example, the ray direction, given the slowness vector.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源