论文标题
小,冰冷的外事物的地下可居住性
The subsurface habitability of small, icy exomoons
论文作者
论文摘要
假设我们的太阳系是典型的,外的,可能会超过系外行星。因此,如果它们的宜居性分数相似,那么它们将构成宇宙中最大的居住房地产。我们的太阳系中的冰冷月亮,例如欧罗巴和土卫,已经证明具有液态水,这是地球上生命的先决条件。我们打算在哪种情况下调查较小的冰冷月亮可能会维持地下海洋,从而成为“地下宜居”。我们特别注意潮汐加热。我们利用了一种现象学方法来潮汐加热。我们计算了恒星和行星(热和反射恒星)照明的轨道平均通量。然后,我们根据冰壳和岩石的绝缘层对表面的照明和热传导计算地下温度。我们采用了仅传导模型,忽略了火山壳和冰壳对流作为内部热量的出口。在这样做的过程中,我们确定了冰融化的深度(如果有的话)和地下海洋形成。我们发现月球的物理和轨道特征与熔化深度之间的分析表达。由于这种表达将冰冷的月亮可观察到与熔融深度有关,因此它使我们能够迅速对任何给定的月亮的熔融深度施加上限。我们复制了地下的地下海洋的存在;我们还发现,天王星(Titania&Oberon)的两个最大的卫星可以很好地维持它们。我们的模型预测RHEA没有液态水。可以在跨行星系统上找到可居住的外观环境,这在很大程度上与宿主恒星的距离无关。小而冰冷的地下可居住的月球可能存在于雪线以外的任何地方。在将来的观察中,今年可能会扩大搜索区域的外星宜居环境,而不是居住区。
Assuming our Solar System as typical, exomoons may outnumber exoplanets. If their habitability fraction is similar, they would thus constitute the largest portion of habitable real estate in the Universe. Icy moons in our Solar System, such as Europa and Enceladus, have already been shown to possess liquid water, a prerequisite for life on Earth. We intend to investigate under what circumstances small, icy moons may sustain subsurface oceans and thus be "subsurface habitable". We pay specific attention to tidal heating. We made use of a phenomenological approach to tidal heating. We computed the orbit averaged flux from both stellar and planetary (both thermal and reflected stellar) illumination. We then calculated subsurface temperatures depending on illumination and thermal conduction to the surface through the ice shell and an insulating layer of regolith. We adopted a conduction only model, ignoring volcanism and ice shell convection as an outlet for internal heat. In doing so, we determined at which depth, if any, ice melts and a subsurface ocean forms. We find an analytical expression between the moon's physical and orbital characteristics and the melting depth. Since this expression directly relates icy moon observables to the melting depth, it allows us to swiftly put an upper limit on the melting depth for any given moon. We reproduce the existence of Enceladus' subsurface ocean; we also find that the two largest moons of Uranus (Titania & Oberon) could well sustain them. Our model predicts that Rhea does not have liquid water. Habitable exomoon environments may be found across an exoplanetary system, largely irrespective of the distance to the host star. Small, icy subsurface habitable moons may exist anywhere beyond the snow line. This may, in future observations, expand the search area for extraterrestrial habitable environments beyond the circumstellar habitable zone.