论文标题
亲关系和普遍Koszulity的Pro-P组
Pro-p groups with few relations and Universal Koszulity
论文作者
论文摘要
令$ p $为素数。我们表明,如果最多有2个定义关系的Pro-P $组具有二次$ \ mathbb {f} _p $ - 亚物种学,那么这样的代数是普遍的koszul。这证明了J.Mináč等人提出的“普遍Koszulity猜想”。如果是最大的$ P $ GALOIS团体,最多有2个定义关系。
Let $p$ be a prime. We show that if a pro-$p$ group with at most 2 defining relations has quadratic $\mathbb{F}_p$-cohomology, then such algebra is universally Koszul. This proves the "Universal Koszulity Conjecture" formulated by J. Mináč et al. in the case of maximal pro-$p$ Galois groups of fields with at most 2 defining relations.