论文标题

使用MRI图像深度学习的前交叉韧带损伤的层次严重程度分期

Hierarchical Severity Staging of Anterior Cruciate Ligament Injuries using Deep Learning with MRI Images

论文作者

Namiri, Nikan K., Flament, Io, Astuto, Bruno, Shah, Rutwik, Tibrewala, Radhika, Caliva, Francesco, Link, Thomas M., Pedoia, Valentina, Majumdar, Sharmila

论文摘要

目的:评估两个卷积神经网络(CNN)的诊断效用,以进行前交叉韧带(ACL)损伤的严重程度分期。 材料和方法:从224名患者(47 +/- 14岁,54%,54%的女性)在2011年至2014年间获得的1243次膝盖MR图像(1008个完整,部分撕裂,完全撕裂和140个重建的ACL)对1243个膝盖MR图像进行了回顾性分析。放射线使用了修改的计数,该测得的计数。为了将ACL损伤与深度学习进行分类,使用了两种类型的CNN,一种具有三维(3D),另一种具有二维(2D)卷积内核。性能指标包括灵敏度,特异性,加权Cohen的Kappa以及整体准确性,然后进行McNemar的测试以比较CNNS性能。 结果:使用2D CNN(准确性:92%(233/254)和Kappa:0.83),报道的ACL损伤分类的总体准确性和加权Cohen的Kappa高于3D CNN(精度:89%(225/254)和KAPPA:KAPPA:0.83)(0.83)(p = .27)。 2D CNN和3D CNN在对完整的ACL分类(2D CNN:93%(188/203)的敏感性和90%(46/51)特异性; 3D CNN:89%(180/203)敏感性和88%(45/51)特异性)方面相似。两个网络对全部泪的分类也可比(2D CNN:82%(14/17)敏感性和94%(222/237)特异性; 3D CNN:76%(13/17)敏感性和100%(236/237)特异性)。 2D CNN正确地对所有重建ACL进行了分类。 结论:应用于ACL病变分类的2D和3D CNN具有较高的灵敏度和特异性,这表明这些网络可用于帮助通过非专家级的ACL损伤。

Purpose: To evaluate the diagnostic utility of two convolutional neural networks (CNNs) for severity staging of anterior cruciate ligament (ACL) injuries. Materials and Methods: This retrospective analysis was conducted on 1243 knee MR images (1008 intact, 18 partially torn, 77 fully torn, and 140 reconstructed ACLs) from 224 patients (age 47 +/- 14 years, 54% women) acquired between 2011 and 2014. The radiologists used a modified scoring metric. To classify ACL injuries with deep learning, two types of CNNs were used, one with three-dimensional (3D) and the other with two-dimensional (2D) convolutional kernels. Performance metrics included sensitivity, specificity, weighted Cohen's kappa, and overall accuracy, followed by McNemar's test to compare the CNNs performance. Results: The overall accuracy and weighted Cohen's kappa reported for ACL injury classification were higher using the 2D CNN (accuracy: 92% (233/254) and kappa: 0.83) than the 3D CNN (accuracy: 89% (225/254) and kappa: 0.83) (P = .27). The 2D CNN and 3D CNN performed similarly in classifying intact ACLs (2D CNN: 93% (188/203) sensitivity and 90% (46/51) specificity; 3D CNN: 89% (180/203) sensitivity and 88% (45/51) specificity). Classification of full tears by both networks were also comparable (2D CNN: 82% (14/17) sensitivity and 94% (222/237) specificity; 3D CNN: 76% (13/17) sensitivity and 100% (236/237) specificity). The 2D CNN classified all reconstructed ACLs correctly. Conclusion: 2D and 3D CNNs applied to ACL lesion classification had high sensitivity and specificity, suggesting that these networks could be used to help grade ACL injuries by non-experts.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源