论文标题
使用MRI图像深度学习的前交叉韧带损伤的层次严重程度分期
Hierarchical Severity Staging of Anterior Cruciate Ligament Injuries using Deep Learning with MRI Images
论文作者
论文摘要
目的:评估两个卷积神经网络(CNN)的诊断效用,以进行前交叉韧带(ACL)损伤的严重程度分期。 材料和方法:从224名患者(47 +/- 14岁,54%,54%的女性)在2011年至2014年间获得的1243次膝盖MR图像(1008个完整,部分撕裂,完全撕裂和140个重建的ACL)对1243个膝盖MR图像进行了回顾性分析。放射线使用了修改的计数,该测得的计数。为了将ACL损伤与深度学习进行分类,使用了两种类型的CNN,一种具有三维(3D),另一种具有二维(2D)卷积内核。性能指标包括灵敏度,特异性,加权Cohen的Kappa以及整体准确性,然后进行McNemar的测试以比较CNNS性能。 结果:使用2D CNN(准确性:92%(233/254)和Kappa:0.83),报道的ACL损伤分类的总体准确性和加权Cohen的Kappa高于3D CNN(精度:89%(225/254)和KAPPA:KAPPA:0.83)(0.83)(p = .27)。 2D CNN和3D CNN在对完整的ACL分类(2D CNN:93%(188/203)的敏感性和90%(46/51)特异性; 3D CNN:89%(180/203)敏感性和88%(45/51)特异性)方面相似。两个网络对全部泪的分类也可比(2D CNN:82%(14/17)敏感性和94%(222/237)特异性; 3D CNN:76%(13/17)敏感性和100%(236/237)特异性)。 2D CNN正确地对所有重建ACL进行了分类。 结论:应用于ACL病变分类的2D和3D CNN具有较高的灵敏度和特异性,这表明这些网络可用于帮助通过非专家级的ACL损伤。
Purpose: To evaluate the diagnostic utility of two convolutional neural networks (CNNs) for severity staging of anterior cruciate ligament (ACL) injuries. Materials and Methods: This retrospective analysis was conducted on 1243 knee MR images (1008 intact, 18 partially torn, 77 fully torn, and 140 reconstructed ACLs) from 224 patients (age 47 +/- 14 years, 54% women) acquired between 2011 and 2014. The radiologists used a modified scoring metric. To classify ACL injuries with deep learning, two types of CNNs were used, one with three-dimensional (3D) and the other with two-dimensional (2D) convolutional kernels. Performance metrics included sensitivity, specificity, weighted Cohen's kappa, and overall accuracy, followed by McNemar's test to compare the CNNs performance. Results: The overall accuracy and weighted Cohen's kappa reported for ACL injury classification were higher using the 2D CNN (accuracy: 92% (233/254) and kappa: 0.83) than the 3D CNN (accuracy: 89% (225/254) and kappa: 0.83) (P = .27). The 2D CNN and 3D CNN performed similarly in classifying intact ACLs (2D CNN: 93% (188/203) sensitivity and 90% (46/51) specificity; 3D CNN: 89% (180/203) sensitivity and 88% (45/51) specificity). Classification of full tears by both networks were also comparable (2D CNN: 82% (14/17) sensitivity and 94% (222/237) specificity; 3D CNN: 76% (13/17) sensitivity and 100% (236/237) specificity). The 2D CNN classified all reconstructed ACLs correctly. Conclusion: 2D and 3D CNNs applied to ACL lesion classification had high sensitivity and specificity, suggesting that these networks could be used to help grade ACL injuries by non-experts.